Vgl agly d=o !
Python Programming

(1) p3, 8 rolxo

w=sxodldae o>l jau> D

wow | aobil Uludi pawd Vol Al axo a8 il

Computers can perform such a wide variety of tasks because they can be programmed. This me

computers are not designed to do just one job, but to do any job that their programs tell them to d
A program is a set of instructions that a computer follows to perform a task.

Programs are commonly referred to as software. Software is essential to a computer because it co

everything the computer does.

This course introduces you to the fundamental concepts of computer programming using the
language. The Python language is a good choice for beginners because it is easy to learn, and

can be written quickly using it.

Python is a general-purpose language created in the early 1990s. It has become popular in busi

academic applications.

Python is also a powerful language, popular with professional software developers.

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

Because the CPU understands only machine language instructions, programs that are written in

level language must be translated into machine language.

Depending on the language in which a program has been written, the programmer will use ei

compiler or an interpreter to make the translation.

A compiler is a program that translates a high-level language program into a separate machine lan

program. The machine language program can then be executed any time it is needed.

The Python language uses an interpreter, which is a program that both translates and exe

instructions in a high-level language program.

As the interpreter reads each individual instruction in the program, it converts it to machine |

instructions then immediately executes them. Because interpreters combine translation and e

they typically do not create separate machine language programs.

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

Before write any programs of your own, you need to make sure that Python is installed on your co

and properly configured.

When you install the Python language on your computer, one of the items that is installed is the Pyt

interpreter.
The Python interpreter is a program that can read Python programming statements and execute the

You can use the interpreter in two modes: interactive mode and script mode. In interactive mode, t
interpreter waits for you to type Python statements on the keyboard. Once you type a statemen

interpreter executes it and then waits for you to type another statement.

In script mode, the interpreter reads the contents of a file that contains Python statements. Such

known as a Python program or a Python script.

ol e o>l Hau D

A(n) program translates a high-level language
program into a separate machine language program.

compiler
interpreter

Machine language is the only language that a CPU
understands.

True

False

What is the difference between a compiler and an
interpreter?

An interpreter is a program that both translates and
executes the instructions in a high-level language
program.

True

False

U=l ldue o>l Hau>

Ul @nkail Gludi paud

Uil asly asxo I

T RESER]

Input, Processing, and output

» Computer programs typically perform the following three-step process:

» 1. Input is received.

» 2. Some process is performed on the input.

» 3. Output is produced.

» Input is any data that the program receives while it is running. One common form of input i
typed on the keyboard. Once input is received, some process, such as a mathematical ca

usually performed on it. The results of the process are then sent out of the program as output.

Input
Hours worked *’
Hourly pay rate *

Process

Multiply hours worked
by hourly pay rate

Output

sl Gross pay

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

A function is a piece of prewritten code that performs an operation. Python has numerous

functions that perform various operations.

Perhaps the most fundamental built-in function is the print function, which displays output

screen. print('Hello world')

When you call the print function, you type the word print, followed by a set of parentheses. Insid

parentheses, you type an argument, which is the data that you want displayed on the screen.

In programming terms, a sequence of characters that is used as data is called a string. Whe

appears in the actual code of a program, it is called a string literal.

In Python, you can enclose string literals in a set of single-quote marks (') or double-quote/marks (

If you want a string literal to contain either a single-quote or an apostrophe as part of the strin

enclose the string literal in double-quote marks.

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo

Displaying Output with the print Function

Program | (output.py) Program (double_quotes.py)
1 print('Kate Austen') 1 print("Kate Austen")

2 print('123 Full Circle Drive') 2 print("123 Full Circle Drive")

3 print("Asheville, NC 28899') 3 print("Asheville, NC 28899")
Program Output Program Output
Kate Austen Kate Austen

123 Full Circle Drive
Asheville, NC 28899

123 Full Circle Drive
Asheville, NC 28899

Program (display_quote.py)

1 print('Your assignment is to read "Hamlet" by tomorrow.')

Program Output
Your assignment is to read "Hamlet" by tomorrow.

Program (apostrophe.py)

1 print("Don't fear!")
2 print("I'm here!")

Program Output

Don't fear!
I'm here!

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

Comments are short notes placed in different parts of a program, explaining how those parts
program work. Although comments are a critical part of a program, they are ignored by the

interpreter.
Comments are intended for any person reading a program’s code, not the computer.

In Python, you begin a comment with the # character. When the Python interpreter sees a # charac

ignores everything from that character to the end of the line.

Program (comment1. py)
_ ‘ Program Output
1 # This program displays a person's
2 # name and address. Kate Austen
3 print('Kate Austen') 123 Full Circle Drive
4 print('123 Full Circle Drive') Asheville, NC 28899
5 print('Asheville, NC 28899")

ol e o>l Hau D

Write a statement that displays your name.

Write a statement that displays the following text:

Python's the best!

Write a statement that displays the following text:

The cat said "meow."”

U=l ldue o>l Hau>

Vgl agly d=o !
Python Programming

(2) p3, 8 olxo

w=sxodldae o>l jau> D

wow | aobil Uludi pawd Vol Al axo a8 il

Programs usually store data in the computer’s memory and perform operations on that data.
Programs use variables to access and manipulate data that is stored in memory.
A variable is a name that represents a value in the computer’s memory.

You use an assignment statement to create a variable and make it reference a piece of data. 298 = 25

After the above statement executes, a variable named age will be created, and it will reference the
value 25.

An assignment statement is written in the following general format: Va@riable = expression

The equal sign (=) is known as the assignment operator. In the general format, variable is the nam

variable and expression is a value, or any piece of code that results in a value.

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

Although you are allowed to make up your own names for variables, you must follow these rules:
You cannot use one of Python’s key words as a variable name.
A variable name cannot contain spaces.
The first character must be one of the letters a through z, A through Z, or an underscore character (_).

After the first character you may use the letters a through z or A through Z, the digits O through 9, or

underscores.

Uppercase and lowercase characters are distinct. This means the variable name ItemsOrdered is not the

itemsordered.

In addition to following these rules, you should always choose names for your variables that
indication of what they are used for. For example, a variable that holds the temperature might

temperature, and a variable that holds a car’s speed might be nhamed speed.

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

Python allows us to display multiple items with one call to the print function. We simply have to s

the items with commas as shown in below program.
Program (variable_demo3.py)

1 # This program demonstrates a variable.
2 room = 503

3 print('I am staying in room number', room) Program Output
I am staying in room number 503

Variables are called “variable” because they can reference different values while a program is run

Program. (variable_demo4.py)

1 # This program demonstrates variable reassignment.
2 # Assign a value to the dollars variable.

3 dollars = 2.75
4 print('I have', dollars, 'in my account.')

Reassign dollars so it references
a different value.

dollars = 99.95

print('But now I have', dollars, 'in my account!')

00 =] @ N

o

1

ol e o>l Hau D

What is a variable?

Which of the following are illegal variable names in

Python, and why?

X
99bottles

july2009
theSalesFigureForFiscalYear

ré&d
grade_report

Is the variable name Sales the same as sales? Why ?

Is the following assignment statement valid or invalid? If

it is invalid, why? 72 = amount

What will the following code display?

val = 99
print('The value is', 'wval')

U=l ldue o>l Hau>

wow | aobil Uludi pawd Vol Al axo a8 il

Because different types of numbers are stored and manipulated in different ways, Python uses da

to categorize values in memory. When an integer is stored in memory, it is classified as an int, an

a real number is stored in memory, it is classified as a float.

A number that is written into a program’s code is called a numeric literal. When the Python inter

reads a numeric literal in a program’s code, it determines its data type according to the following rul

A numeric literal that is written as a whole number with no decimal point is considered an int. Examples
124, and -9.

A numeric literal that is written with a decimal point is considered a float. Examples are 1.5, 3.14159, a

When you store an item in memory, it is important for you to be aware of the item’s data type
will see, some operations behave differently depending on the type of data involved, a

operations can only be performed on values of a specific data type.

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

In addition to the int and float data types, Python also has a data type named str, which is

storing strings in memory.
Program 2-11 (string_variable.py)

Create variables to reference two strings.
first_name = 'Kathryn'
last_name = 'Marino'

Display the values referenced by the variables.

print(first_name, last_name)

1
2
3
4
Program Output S

Kathryn Marino
A variable in Python can refer to items of any type. After a variable has been assigned an i

type, it can be reassigned an item of a different type.

1 =>>> x = 99 4 >>> x = 'Take me to your leader'
2 >>> print(x) [(Enter] 5 >>> print(x)
3 99 6 Take me to your leader.

Enter

ol e o>l Hau D

After the following assignment statements execute, what
is the Python data type of the values

valuel = 99
value2 = 45.9
valued = 7.0
valued = 7
valueb = '"abc'

What will be displayed by the following program?

my_value = 99
my_value = 0
print(my_value)

w=sxod s o] Ha>

wow | aobil Uludi pawd Vol Al axo a8 il

Most of the programs that you will write will need to read input and then perform an operation

input. In the course, we use Python’s built-in input function to read input from the keyboard.

The input function reads a piece of data that has been entered at the keyboard and returns that pi

data, as a string, back to the program.
You normally use the input function in an assignment statement that follows this general format:

variable = 1input(prompt) name = input('What is your name? ')
When the above statement executes, the following things happen:

The string 'What is your name? ' is displayed on the screen.

The program pauses and waits for the user to type something on the keyboard and then to press the Ente

When the Enter key is pressed, the data that was typed is returned as a string and assigned to the nam

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

Reading Input from the Keyboard

» The program below shows a complete program that uses the input function to read two strings

from the keyboard.
Program (string_input.py)

Get the user's first name.
first_name = input('Enter your first name: ')

1
2
3
4 # Get the user's last name.

5 last_name = input('Enter your last name: ')
6

f

8

Print a greeting to the user.
print('Hello’', first_name, last_name)

Program Output (with input shown in bold)

Enter your first name: Vinny
Enter your last name: Brown
Hello Vinny Brown

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

The input function always returns the user’s input as a string, even if the user enters numeric dat

This can be a problem if you want to use the value in a math operation. Math operations

performed only on numeric values, not strings.

Fortunately, Python has built-in functions that you can use to convert a string to a numeric type.

below summarizes two of these functions.

Table Data conversion functions
Function Description
int(7tem) You pass an argument to the int () function and it returns the argument’s

value converted to an int.

float(item) You pass an argument to the float() function and it returns the argument’s
value converted to a float.

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

The program below a complete program that uses the input function to read a string, an int, and

as input from the keyboard.
Program (input.py)

1 # Get the user's name, age, and income.

2 name = input('What is your name? ')

2 age = int(input('What is your age? ')) o :

4 dincome = float(input('What 1is your income? ')) Program Output (with input shown in bold)
5 What is your name? Chris Enter)

6 # Display the data. What is your age? 25 (Enter)

7 print('Here is the data you entered:') What is your income? 75000.0

& print('Name:', name) Here is the data you entered:

9 print('Age:', age) Name: Chris

10 print('Income:', income) Age: 25

Income: 75000.0

ol e o>l Hau D

You need the user of a program to enter a customer’s last
name. Write a statement that prompts the user to enter

this data and assigns the input to a variable.

You need the user of a program to enter the amount of
sales for the week. Write a statement that prompts the
user to enter this data and assigns the input to a

variable.

U=l ldue o>l Hau>

Vgl agly d=o !
Python Programming

(3) p3, 8 olxo

w=sxodldae o>l jau> D

Ul @nkail Gludi paud

Usib asl dso | L vl

Performing Calculations

» Most real-world algorithms require calculations to be performed. A programmer’s tools for perf:

calculations are math operators.

» Table below lists the math operators that are provided by the Python language.

Table Python math operators

Symbol Operation Description

- Addition Adds two numbers

- Subtraction Subtracts one number from another

* Multiplication Multiplies one number by another

/ Division Divides one number by another and gives the result as
a floating-point number

/1 Integer division Divides one number by another and gives the result as
a whole number

% Remainder Divides one number by another and gives the remainder

o Exponent Raises a number to a power

ol e o>l Hau D

Ul @nkail Gludi paud

Uil asly asxo I

Performing Calculations

» When we use a math expression to calculate a value, normally we want to save that value in

we can use it again in the program. We do this with an assighment statement. Program 2-

example.

Program - (simple_math. py)
1 # Assign a value to the salary variable.
2 salary = 2500.0
3
4 # Assign a value to the bonus variable.
5 bonus = 1200.0
6
7 # Calculate the total pay by adding salary
& # and bonus. Assign the result to pay.
9 pay = salary + bonus

10

11 # Display the pay.

12 print('Your pay is’', pay)

Program Output
Your pay is 3700.0

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

Floating-Point and Integer Division

» Notice that Python has two different division operators. The / operator performs floating-poin

and the // operator performs integer division.

» Both operators divide one number by another. The difference between them is that the / op

the result as a floating-point value, and the // operator gives the result as a whole number.

>>> 5 | 2 [Enter) | 5>>> 5 // 2 (Enter) | >>> -5 // 2 (Enter]
2.5 2 -3

» The // operator works like this:
» When the result is positive, it is truncated, which means that its fractional part is thrown away.

» When the result is negative, it is rounded away from zero to the nearest integer.

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

First, operations that are enclosed in parentheses are performed first. Then, when two operato

an operand, the operator with the higher precedence is applied first.
outcome = 12.0 + 6.0 / 3.0

The precedence of the math operators, from highest to lowest, are: | |

Exponentiation: ** outcome = 12.0 + 2,n|
Multiplication, division, and remainder: * / // % l
Addition and subtraction: + - outcome = 14.0

Notice the multiplication (*), floating-point division (/), integer division (//), and remainder (%)
have the same precedence. The addition (+) and subtraction (-) operators also ha

precedence.

When two operators with the same precedence share an operand, the operators

right.

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

Quite often, programs have assignment statements in which the variable that is on the left side

operator also appears on the right side of the = operator. Here are examples: x=x+ 1,y =y - 5.

On the right side of the assighment operator, 1 is added to x. The result is then assigned to X, re

the value that x previously referenced. Effectively, this statement adds 1 to x.

These types of operations are common in programming. For convenience, Python offers a special

operators designed specifically for these jobs. Table below shows the augmented assighment operat

Table Augmented assignment operators

Operator Example Usage Equivalent To
+= X += 5 X=x+25
= y =2 y=y -2
*= z *= 10 z=2z"*

/= al=b a=al

%= c %= 3 c=c%

ol e o>l Hau D

Complete the following table by writing the value of each
expression in the Value column:

Expression Value
6 +3 * 5

12 /| 2 - 4

9 + 14 * 2 - 6
(6 +2) * 3

14 / (11 = 4)
9+ 12 * (8 - 3)

What value will be assigned to result after the following
statement executes? result =9 // 2

What value will be assigned to result after the following
statement executes? result = 9 % 2

U=l ldue o>l Hau>

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

Python allows you to break too long statement into multiple lines by using the line conti

character, which is a backslash (\).

You simply type the backslash character at the point you want to break the statement, then pre

Enter key.
nter Key result = var1 * 2 + var2 * 3 + |\

var3d * 4 + vard * 5

Python also allows you to break any part of a statement that is enclosed in parentheses into multipl

without using the line continuation character.

print("Monday's sales are", monday, total = (valuel + value2 +
"and Tuesday's sales are", tuesday, value3d + valued +
"and Wednesday's sales are", wednesday) valueb + value6)

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

The print function normally displays a line of output. For example, the following three stateme

produce three lines of output: print('One’)
print('Two")
print('Three')

Each of the statements shown here displays a string and then prints a newline character. It caus

output to advance to the next line.

If you do not want the print function to start a new line of output when it finishes displaying its o

you can pass the special argument end=" ' to the function, as shown in the following code:

print('One', end=" ")
print('Two', end=' ')
print({'Three") One Two Three

Sometimes, you might not want the print function to print anything at the end of its output, n

space. If that is the case, you can pass the argument end=" to the print function.

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

An escape character is a special character that is preceded with a backslash (\), appearing inside
literal.

When a string literal that contains escape characters is printed, the escape characters are trea

special commands that are embedded in the string.

Python recognizes several escape characters, some of which are listed in Table below.

Table Some of Python’s escape characters
Escape Character Effect
\n Causes output to be advanced to the next line.
\t Causes output to skip over to the next horizontal tab position.
\ " Causes a single quote mark to be printed.
\ " Causes a double quote mark to be printed.
WA Causes a backslash character to be printed.

ol e o>l Hau D

Loawlodl aodiil Oludi puwd UgisL @l @seo I \

Escape Characters

o print('Thur\tFriltSat') The path is C:\temp\data.

Mon Tues Wed
Thur Fri Sat

Two
Three

print("Your assignment is to read \"Hamlet\" by tomorrow.")
print('I\'m ready to begin.')

Your assignment is to read "Hamlet" by tomorrow.
I'm ready to begin.

» You saw that the + operator is used to add two numbers. When the + operator is used wit

however, it performs string concatenation. This means that it appends one string to anoth

print('This is ' + 'one string.')

This is one string.

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

When a floating-point humber is displayed by the print function, it can appear with up to 12 sig

digits. Program Output

The monthly payment is 416.666666667

Sometimes, it would be nice to see that amount rounded to two decimal places. Fortunately, Python

us a way to do just that, and more, with the built-in format function.

When you call the built-in format function, you pass two arguments to the function: a numeric val
a format specifier. The format specifier is a string that contains special characters specifying

numeric value should be formatted.

>>> print(format(12345.6789, '.2f')) >>> print(format(12345.6789, '.1f'))
12345.68 12345.7

The f specifies that the data type of the number we are formatting is a floating-point numb%r.

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

If you prefer to display floating-point humbers in scientific notation, you can use the letter e or th

E instead of f.

>>> print(format(12345.6789, '.2e'))
1.23e+04

If you want the number to be formatted with comma separators, you can insert a comma into the f

specifier.
P >>> print(format(123456789.456, ',.2f'))

123,456,789.46

Instead of using f as the type designhator, you can use the % symbol to format a floating-point n

percentage.
>>> print(format (0.5, '.0%' [Enter)
50% P (()) >>> print(format (123456, 'd'))
123456 |
You can also use the format function to format integers. | >>> print(format (123456, ',d"))
123,456

ol e o>l Hau D

How do you suppress the print function’s ending newline?

How can you change the character that is automatically
displayed between multiple items that are passed to the

print function?
What is the \n' escape character?

What does the + operator do when it is used with two
strings?
What does the statement print(format(65.4321, ".2f'))
display?

What does the statement print(format(987654.129, ',.2f"))
display?

U=l ldue o>l Hau>

Vgl agly d=o !
Python Programming

(4) p3, & olxo

w=sxodldae o>l jau> D

wow | aobil Uludi pawd Vol Al axo a8 il

A control structure is a logical design that controls the order in which a set of statements execute.

Some programs require a different type of control structure: one that can execute a set of stat

only under certain circumstances. This is accomplished with a decision structure (selection structur

In a decision structure’s simplest form, a specific action is performed

only if a certain condition exists. If the condition does not exist, the

action is not performed.

Cold

Programmers call the type of decision structure shown in the Figure eide

a single alternative decision structure. This is because it provides only

one alternative path of execution. | Wear a coat. |

False

If the condition in the diamond symbol is true, we take the alternative

path. Otherwise, we exit the structure Y

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

In Python, we use the if statement to write a single alternative decision structure. Here is the

format of the if statement: : .
if condition:

statement
statement
etc.

When the if statement executes, the condition is tested. If the condition is true, the statement
appear in the block following the if clause are executed. If the condition is false, the statements

block are skipped.

The expressions that are tested by the if statement are called Boolean expressions. Typically, the

expression that is tested by an if statement is formed with a relational operator.

A relational operator determines whether a specific relationship exists between two values. For

the greater than operator (>) determines whether one value is greater than another.

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo

Boolean Expressions and Relational Operators

» Tables below show the relational operators that are available in Python and examples of seve

expressions that compare the variables x and y.

Boolean expressions using relational operators

Table Relational operators Table
Operator Meaning Expression
> Greater than X >y
< Less than X <y
>= Greater than or equal to X >=y
<= Less than or equal to X <=y
== Equal to X ==y
1= Not equal to x 1=y

Meaning

[s x greater than y?

Is x less than y?

Is x greater than or equal to y?
Is x less than or equal to y?

Is x equal to y?

[s x not equal to y?

» Two of the operators, >= and <=, test for more than one relationship. They dete

operand on its left is greater than (less than) or equal to the operand on its right.

ol e o>l Hau D

What is a control structure?

What is a decision structure?

What is a single alternative decision structure?
What is a Boolean expression?

What types of relationships between values can you test

with relational operators?

Write an if statement that assigns 0 to x if y is equal to
20.

Write an if statement that assigns 0.2 to commissionRate

if sales is greater than or equal to 10000.

U=l ldue o>l Hau>

wow | aobil Uludi pawd Vol Al axo a8 il

Now, we will look at the dual alternative decision structure, which has two possible paths of exe

one path is taken if a condition is true, and the other path is taken if the condition is false.

In code, we write a dual alternative decision structure as an if-else statement. Here is the general

of the if-else statement:

Figure Conditional execution in an if-else statement
if condition:
statement if condition: if condition:
If the condition is true, this statement statement
statement block of statements is statement statement
etc. executed. elc. atc.
else: else:
else: statement If the condition is false, this staterment
statement Then, control jumps here, szaremen! ::f::u ;:-; :taternents is sigremenr
statement to the statement following " elc " elc
the if-else statement. Then, control jumps here, e—
etc. to the statement following

the if-else statement.

ol e o>l Hau D

How does a dual alternative decision structure work?

What statement do you use in Python to write a dual

alternative decision structure?

When you write an if-else statement, under what
circumstances do the statements that appear after the

else clause execute ?

U=l ldue o>l Hau>

wow | aobil Uludi pawd Vol Al axo a8 il

To test more than one condition, a decision structure can be nested inside another decision struct

Python provides a special version of the decision structure known as the if-elif-else statement,

makes programs with many conditions simpler to write.
if condition_1:

When the statement executes, condition_1 is tested. statement
statement

If condition_1 is true, the block of statements that etc.

immediately follow is executed, up to the elif clause. 11T candition 2:
statement

The rest of the structure is ignored. statement
etc.

If condition_1 is false, however, the program jumps to
Insert as many el1if clauses as necessary . . .

the very next elif clause and tests condition_2.

else:
This process continues until a condition is found to be statement
statement
true, or no more elif clauses are left. etc.

ol e o>l Hau D

Convert the following code to an if-elif-else statement:

if number ==
print('One')
else:
if number == 2: /
Question
else:
if number ==
print('Three')
else:

print('Unknown’')

U=l ldue o>l Hau>

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

Python provides a set of operators known as logical operators, which you can use to create

Boolean expressions. Table below describes these operators.

Table Logical operators

Operator Meaning

and The and operator connects two Boolean expressions into one compound expres-
sion. Both subexpressions must be true for the compound expression to be true.

or The or operator connects two Boolean expressions into one compound expression.
One or both subexpressions must be true for the compound expression to be true.
It is only necessary for one of the subexpressions to be true, and it does not matter

which.

not The not operator is a unary operator, meaning it works with only one operand.
The operand must be a Boolean expression. The not operator reverses the truth
of its operand. If it is applied to an expression that is true, the operator returns
false. If it 1s applied to an expression that is false, the operator returns true.

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

So far, we have worked with int, float, and str (string) variables. In addition to these data types,

also provides a bool data type.

The bool data type allows you to create variables that may reference one of two possible values:
False. Here are examples of how we assign values to a bool variable: hungry = True
sleepy = False
Boolean variables are most commonly used as flags. A flag is a variable that signals when some co
exists in the program. When the flag variable is set to False, it indicates the condition does n

When the flag variable is set to True, it means the condition does exist.

if sales == 50000.0:
sales_quota_met

else:
sales_quota_met

True

False

ol e o>l Hau D

Assume the variablesa=2,b =4, and c=6. Circle T or F
for each of the following conditions to indicate whether

its value is true or false.

a==4o0orb>2 T F
6 <= c and a > 3 T F
1 !'= b and ¢ = 3 T F
a > -1or a<=b T F
not (a = 2) T F

Write an if statement that displays the message “The
number is valid” if the value referenced by speed is
within the range 0 through 200.

Write an if statement that displays the message “The
number is not valid” if the value referenced by speed is

outside the range 0 through 200.

U=l ldue o>l Hau>

Vgl agly d=o !
Python Programming

(5) p3, & olxs

w=sxodldae o>l jau> D

wow | aobil Uludi pawd Vol Al axo a8 il

Programmers commonly have to write code that performs the same task over and over.

Instead of writing the same sequence of statements over and over, a better way to repeatedly perf
operation is to write the code for the operation once, then place that code in a structure that mak

computer repeat it as many times as necessary.
This can be done with a repetition structure, which is more commonly known as a loop.
In this course, we will look at two broad categories of loops: condition-controlled and count-control

A condition-controlled loop uses a true/false condition to control the number of times that it r

count-controlled loop repeats a specific number of times.

In Python, you use the while statement to write a condition-controlled loop, and you use

statement to write a count-controlled loop.

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

The while loop gets its name from the way it works: while a condition is true, do some task.

The loop has two parts:

(1) a condition that is tested for a true or false value.
while condition:

(2) a statement or set of statements that is repeated as long as the condition is true. statement
statement

Here is the general format of the while loop in Python: ete

When the while loop executes, the condition is tested. If the

condition is true, the statements that appear in the block

following the while clause are executed, and the loop starts Statement(s)

over. If the condition is false, the program exits the loop.

ol e o>l Hau D

ow | dodbil Wlusi pand Vol Al aswo @l sl
Program (commission.py)
15 # Display the commission.

This program calculates sales commissions. 16 print('The commission is §',
2 17 format (commission, ',.2f"'), sep="")
3 # Create a variable to control the loop. 18
4 keep_going = 'y' 19 # See if the user wants to do another one.
5 20 keep_going = input('Do you want to calculate another ' +
6 # Calculate a series of commissions. 21 ‘commission (Enter y for yes): ')
7 while keep_going == 'y':
8 # Get a salesperson's sales and commission rate. Program Output (with input shown in bold)
9 sales = float(input('Enter the amount of sales: ')) Enter the amount of sales: 10000.00 (Enter)
10 comm_rate = float(input('Enter the commission rate: ')) Enter the commission rate: 0.10 (Enter)
11 The commission is $1,000.00
12 # Calculate the commission. Do you want to calculate another commission (Enter y for yes): y
13 commission = sales * comm_rate Enter the amount of sales: 20000.00 (Enter)
14

This program shows how we use a while loop

to write the commission calculating program

Enter the commission rate: 0.15 (Enter)

The commission is $3,000.00

Do you want to calculate another commission (Enter y for yes): y
Enter the amount of sales: 12000.00 (Enter)

Enter the commission rate: 0.10 (Enter)

The commission is $1,200.00

Do you want to calculate another commission (Enter y for yes): m
\

ol e o>l Hau D

What is a loop iteration?

Does the while loop test its condition before or after it

performs an iteration?

How many times will 'Hello World" be printed in the

following program?

count = 10
while count < 1:

print('Hello World")

U=l ldue o>l Hau>

wow | aobil Uludi pawd Vol Al axo a8 il

In Python, the for statement is designed to work with a sequence of data items. When the st
executes, it iterates once for each item in the sequence. Here is the general format:

for variable in [valuel, value2, etc.]:
statement
statement
etc.

The for statement executes in the following manner: The variable is assigned the first value in th
then the statements that appear in the block are executed. Then, variable is assighed the next v

the list, and the statements in the block are executed again.
This continues until variable has been assigned the last value in the list.

Python programmers commonly refer to the variable that is used in the for clause as the target

because it is the target of an assighment at the beginning of each loop iteration.

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

The for Loop: A Count-Controlled Loop

Program (simple_Tloop2.py)

1 # This program also t{emﬂnstrates a simple for Program (simple_loop3.py)

2 # loop that uses a list of numbers.

3 1 # This program also demonstrates a simple for
4 print('I will display the odd numbers 1 through 9.} 2 # loop that uses a list of strings.

5 for num in [1, 3, 5, 7, 9]: 3

6 print(num) 4 for name in ['Winken', 'Blinken', 'Nod']:

5 print(name)

Program Output
I will display the odd numbers 1 through 9. Program Output
1 Winken
3 Blinken
5 Nod
7
9

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

Python provides a built-in function named range that simplifies the process of writing a count-co

for loop.

The range function creates a type of object known as an iterable. An iterable is an object that is

to a list. It contains a sequence of values that can be iterated over with something like a loop.

In the below statement, the range function will generate an iterable sequence of integers in the ra

0 up to (but not including) 5.

If you pass two arguments to the range function, the first argument is used as the starting val

sequence, and the second argument is used as the ending limit.

If you pass a third argument to the range function, that argument is used as step value. \

for num in range(5): for num in range(1, 5): for num in range(1, 10, 2):
print (num) print (num) print (num)
\

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

Program (squares.py) Program Output
Number Square

1 # This program uses a loop to display a

2 # table showing the numbers 1 through 10 """~~~ """ "°°°°°

3 # and their squares. 1 1

4 2 4

5 # Print the table headings. 3 g

6 print('Number\tSquare') 4 16

7 oprint('===-ccceceean- '

8 S 25

9 # Print the numbers 1 through 10 6 36
10 # and their squares. 7 49
11 for number in range(1, 11): 8 64
12 square = number**2 9 81
13 print(number, '\t', square) 10 100

ol e o>l Hau D

Rewrite the following code so it calls the range function

instead of using the list

[ﬂl 1r 2r 3r 4, 5]:
for x in [0, 1, 2, 3, 4, 5]:
print('I love to program!')

What will the following code display?

>fnr number in range(6):
print (number)

>for number in range(2, 6):
print (number)

}for number in range(0, 501, 100):
print (number)

} for number in range(10, 5, -1):
print (number)

U=l ldue o>l Hau>

Vgl agly d=o,ull
Python Programming

(6) p3, & olxo

w=sxodldae o>l jau> D

wow | aobil Uludi pawd Vol Al axo a8 il

Most programs perform tasks that are large enough to be broken down into several subtasks.
reason, programmers usually break down their programs into small manageable pieces kn

functions.

A function is a group of statements that exist within a program for the purpose of performing a sp
task.

Instead of writing a large program as one long sequence of statements, it can be written as severa

functions, each one performing a specific part of the task.
These small functions can then be executed in the desired order to perform the overall task.

This approach is sometimes called divide and conquer because a large task is divided into severa

tasks that are easily performed.

ol e o>l Hau D

Uow bl ankail Wludi paud

Vgl asl axo Wi

T RESER]

Simpler Code

Code Reuse

Better Testing
Faster Development

Easier Facilitation of Teamwork

This program is one long, complex
sequence of statements.

J

statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement

In this program the task has been
divided into smaller tasks, each of which
is performed by a separate function.

l

def functioni():
statement
statement
statement

function

def function2():
statement
statement
statement

function

def function3():
statement
statement
statement

function

def function4():
statement
statement
statement

function

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

We will learn to write two types of functions: void functions and value returning functions.

When you call a void function, it simply executes the statements it contains and then terminates.

When you call a value-returning function, it executes the statements that it contains, then ret

value back to the statement that called it.

The input function is an example of a value-returning function. When you call the input function, i

the data that the user types on the keyboard and returns that data as a string.

The int and float functions are also examples of value-returning functions. You pass an argum

int function, and it returns that argument’s value converted to an integer.

The first type of function that you will learn to write is the void function.

ol e o>l Hau D

What is a function?
What is meant by the phrase “divide and conquer”?
How do functions help you reuse code in a program?

How can functions make the development of multiple
programs faster?

How can functions make it easier for programs to be
developed by teams of programmers?

U=l ldue o>l Hau>

wow | aobil Uludi pawd Vol Al axo a8 il

To create a function, you write its definition. Here is the general format of a function defin

Python:

def function_name() : def message():
statement print('I am Arthur,"')
statement print('King of the Britons.')
etc.

The first line is known as the function header. It marks the beginning of the function definition
function header begins with the key word def, followed by the name of the function, followed by a

parentheses, followed by a colon.

Beginning at the next line is a set of statements known as a block. A block is simply a set of st

that belong together as a group. These statements are performed any time the function is.execut

Notice in the general format that all of the statements in the block are indented.

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

A function definition specifies what a function does, but it does not cause the function to exe

execute a function, you must call it. This is how we would call the message function: message()
When a function is called, the interpreter jumps to that function and executes its block.

Then, when the end of the block is reached, the interpreter jumps back to the part of the progra
called the function, and the program resumes execution at that point. When this happens, we sa

the function returns.

Program (function_demo.py)
1 # This program demonstrates a function.
2 # First, we define a function named message.
3 def message():
- print('I am Arthur,")
5 print('King of the Britons.') \
6 Program Output
7 # Call the message function. I am Arthur,
8 message() King of the Britons.

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

The previous program has only one function, but it is possible to define many functions in a progra

In fact, it is common for a program to have a main function that is called when the program star

main function then calls other functions in the program as they are needed.

Program (two_functions. py)
1 # This program has two functions. First we 12
2 # define the main function. 13 # Call the main function.
3 def main(): 14 main()
4 print('I have a message for you.')
5 message() Program Output
6 print('Goodbye!") I have a message for you.
7 I am Arthur,
8 # Next we define the message function. King of the Britons.
9 def message(): Goodbye!
10 print('I am Arthur,')
11 print('King of the Britons.')

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

Indentation in Python

» In Python, each line in a block must be indented. As shown in Figure below, the last indented

function header is the last line in the function’s block.

Figure All of the statements in a block are indented

The last indented line is
the last line in the block. def greeting():

‘ print('Good morning!"')
» print(‘'Today we will learn about functions.')

These statements print('I will call the greeting function.')
are not in the block. greeting()

» When you indent the lines in a block, make sure each line begins with the same nur

Otherwise, an error will occur.

~ Blank lines that appear in a block are ignored.

ol e o>l Hau D

A function definition has what two parts?
What does the phrase “calling a function” mean?

When a function is executing, what happens when the
end of the function’s block is reached?

Why must you indent the statements in a block?

U=l ldue o>l Hau>

Vgl agly d=o,ull
Python Programming

(7) p3, & olxo

w=sxodldae o>l jau> D

wow | aobil Uludi pawd Vol Al axo a8 il

Anytime you assign a value to a variable inside a function, you create a local variable.

A local variable belongs to the function in which it is created, and only statements inside that f

can access the variable.

Program (bad_Tlocal . py)
An error occurs if a statement
. 2 def main():
a local variable that belongs to 3 get_name()
another function. 4 print('Hello', name) # This causes an error!
o
. , .
A variable’s scope is the part of 6 # Definition of the get_name function.
a program in which the variable 7 def get_name():
8 name = input('Enter your name: ')
may be accessed. 9
10 # Call the main function.
11 main()

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

Sometimes it is useful not only to call a function, but also to send one or more pieces of data i

function. Pieces of data that are sent into a function are known as arguments.

If you want a function to receive arguments when it is called, you must equip the function with
more parameter variables. A parameter variable, often simply called a parameter, is a special va
that is assigned the value of an argument when a function is called.

def show_double(number) :

result = number * 2
print(result)

value = 5
show_double(value)

A variable’s scope is the part of a program in which the variable may be accessed. A parameter v

scope is the function in which the parameter is used.

All of the statements inside the function can access the parameter variable, but no statement o

function can access it.

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

Often it’s useful to write functions that can accept multiple arguments.

Program below shows a function named show_sum, that accepts two arguments. The function adds

two arguments and displays their sum.

The arguments, 12 and 45, are passed by position to the parameter variables in the function.

Program (multiple_args.py)
10 def show_sum(num1, num2):
1 # This program demonstrates a function that accepts 11 result = numi + num?
2 # two arguments. 12 print(result)
3 13
4 def main(): 14 # Call the main function.
5 print('The sum of 12 and 45 is') 15 main()
6 show_sum(12, 45)
7 Program Output
8 # The show_sum function accepts two arguments The sum of 12 and 45 is
9 # and displays their sum. 57

ol e o>l Hau D

What is a local variable? How is access to a local variable

restricted?
What is a variable’s scope?

Is it permissible for a local variable in one function to
have the same name as a local variable in a different

function?

What are the pieces of data that are passed into a

function called?

What are the variables that receive pieces of data in a

function called?

U=l ldue o>l Hau>

wow | aobil Uludi pawd Vol Al axo a8 il

When a variable is created by an assignment statement that is written outside all the functi
program file, the variable is global. A global variable can be accessed by any statement in the p

file, including the statements in any function.

A global constant is a global name that references a value that cannot be changed.

Program (global2.py)

1 # Create a global variable. _ _
_ 10 print('The number you entered is', number)

2 number =0

3 11
: 12 # Call the main function.

4 def main(): 13 main()

9 global number

6 number = int(input('Enter a number: ')) Program Output

7 show_number ()

3 Enter a number: 55 (Enter)

9 def show_number(): The number you entered is 55

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

You have learned about void functions. A void function is a group of statements that exist
program for the purpose of performing a specific task. When the function is finished, control

program returns to the statement appearing immediately after the function call.

A value-returning function is a special type of function. It is a group of statements that perform a sp

task. When you want to execute the function, you call it.

When a value-returning function finishes, however, it returns a value back to the part of the pr

that called it. The value that is returned from a function can be used like any other value.

Python, as well as most programming languages, comes with a standard library of functions t

already been written for you.

These functions, known as library functions, make a programmer’s job easier because they perf

of the tasks that programmers commonly need to perform.

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

In fact, you have already used several of Python’s library functions. Some of the functions that y

used are print, input, and range. Python has many other library functions.

Some of Python’s library functions are built into the Python interpreter. This is the case with the

input, range, and other functions about which you have already learned.
Many of the functions in the standard library, however, are stored in files that are known as modules

These modules help organize the standard library functions. For example, functions for performin
operations are stored together in a module, functions for working with files are stored to

another module, and so on.

In order to call a function that is stored in a module, you have to write an import statement at t

your program. An import statement tells the interpreter the name of the module that co

function.

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

Random numbers are useful for lots of different programming tasks. Python provides several

functions for working with random numbers. These functions are stored in a module named rando
To use these functions, you first need to write import random statement at the top of your program.

The first random-number generating function that we will discuss is named randint.

Program (random_numbers. py) 3 # Display the number.
9 print('The number is', number)
1 # This program displays a random number 10
2 # in the range of 1 through 10. 11 # Call the main function.
3 import random :
1 12 main()
5 def main():
6 # Get a random number. SRR 0.utput
7 number = random.randint(1, 10) The number 1is 7

ol e o>l Hau D

What is the scope of a global variable?

How does a value-returning function differ from the void
functions?

What is a library function?
Why are library functions like “black boxes”?

What does the following statement do?

X = random.randint(1, 100)

What does the following statement do?

print(random.randint(1, 20))

U=l ldue o>l Hau>

Vgl agly d=o,ull
Python Programming

(8) p3, & olxs

w=sxodldae o>l jau> D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

You write a value-returning function in the same way that you write a void function, with one exc

a value-returning function must have a return statement.

Here is the general format of a value-returning function definition:

Figure Parts of the function
def function_name(): The name of this num1 and num2 are
function is sum. parameters.
statement I |
statement

elc. Y * *

i def sum(numi1, num2):
return expression result = numl + num2 This function returns
return result -= the value referenced by
the result variable.

The value of the expression that follows the key word return will be sent back to the

that called the function. This can be any value, variable, or expression that has a v

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

total = sum(first_age, second_age)
Program (total_ages.py) A |
22 24
1 # This program uses the return value of a function. -l_
2 46
3 def main(): def sum(numi, num2):
4 # Get the user's age. result = num1 + num2
5 first_age = int(input('Enter your age: ')) return result
b
7 # Get the user's best friend's age. 18 def sum{;mml, "“:"21:)
8 second_age = int(input("Enter your best friend's age: ")) 9 result = num num
g 20 return result
21
' # Get the sum of both ages. 22 # Call the main function.
11 total = sum(first_age, second_age) 23 main()
12
13 # Display the total age. Program Output (with input shown in bold)
14 print('Together you are', total, 'years old.") Enter your age: 22 (Enter)
15 '

Enter your best friend's age: 24 (Enter)

16 # The sum function accepts two numeric arguments and Together you are 46 years old.

17 # returns the sum of those arguments.

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

So far, you’ve seen examples of functions that return numbers. You can also write functions that r

strings. For example, the following function prompts the user to enter his or her name, then retur

string that the user entered.

Python allows you to write Boolean functions, which return either True or False. For example, su
you are designing a program that will ask the user to enter a number, then determine whether

number is even or odd. def is_even(number):

Determine whether number is even. If it 1is,
set status to true. Otherwise, set status
to false.
if (number % 2) == 0:

status = True
else:

status = False
Return the value of the status variable.
return status

def get_name():
Get the user's name.
name = input('Enter your name: ')
Return the name.
return name

\

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

The examples of value-returning functions that we have looked at so far return a single value. In

however, you are not limited to returning only one value.

You can specify multiple expressions separated by commas after the return statement, as shown

general format: return expressioni, expressionZ, etc.

As an example, look at the following definition for a function named get_name. The function promp
user to enter his or her first and last names. These names are stored in two local variables: first an

The return statement returns both variables.
def get_name():

Get the user's first and last names.

first_name, last_name = get_name() first = input('Enter your first name: ')
last = input('Enter your last name: ')

Return both names.
return first, last

ol e o>l Hau D

What is the purpose of the return statement in a
function?

Look at the following function definition:

def do_something(number):
return number * 2
a. What is the name of the function?
b. What does the function do?

c. Given the function definition, what will the following
statement display? print(do_something(10))

U=l ldue o>l Hau>

Ul @nkail Gludi paud

Usib asl dso | L vl

The math module in the Python standard library contains several functions that are useful for per

mathematical operations. Table below lists many of the functions in the math module.

Table Many of the functions in the math module

math Module Function
acos(x)

asin(x)

atan(x)

ceil(x)

cos (x)

degrees(x)

exp(x)

Description

Returns the arc cosine of x, in radians.

Returns the arc sine of x, in radians.

Returns the arc tangent of x, in radians.

Returns the smallest integer that is greater than or equal to x.

Returns the cosine of x in radians.

Assuming x is an angle in radians, the function returns the angle
converted to degrees.

Returns *

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

The math Module

Table - Many of the functions in the math module

math Module Function Description

floor(x) Returns the largest integer that is less than or equal to x.

hypot (x, y) Returns the length of a hypotenuse that extends from (0, 0) to (x, y).

log(x) Returns the natural logarithm of x.

1og10(x) Returns the base-10 logarithm of x.

radians (x) Assuming x is an angle in degrees, the function returns the angle
converted to radians.

sin(x) Returns the sine of x in radians.

sqrt (x) Returns the square root of x.

tan(x) Returns the tangent of x in radians.

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

These functions typically accept one or more values as arguments, perform a mathematical o

using the arguments, and return the result.

All of the functions listed in the previous Table return a float value, except the ceil and floor fun

which return int values.

For example, one of the functions is named sqrt. The sqrt function accepts an argument and retur

square root of the argument. result = math.sqrt(16)
The math module defines two variables, pi and e, which are assighed mathematical values for pi

You can use these variables in equations that require their values. For example, the following st

which calculates the area of a circle, uses pi.

area = math.pi * radius**2

ol e o>l Hau D

Loawlodl aodiil Oludi puwd UgisL @l @seo I

The math Module

Program (square_root.py)
1 # This program demonstrates the sqrt function.
2 import math
3
4 def main():
5 # Get a number.
6 number = float(input('Enter a number: ')) Program Output (with input shown in bold)
7 Enter a number: 25 (Enter]
8 # Get the square root of the number. The square root of 25.0 is 5.0
9 square_root = math.sqrt(number)
10
11 # Display the square root.
12 print('The square root of', number, '0 is', square_root)
13
14 # Call the main function.
15 main()

ol e o>l Hau D

What import statement do you need to write in a

program that uses the math module?

Write a statement that uses a math module function to

get the square root of 100 and assigns it to a variable.

Write a statement that uses a math module function to
convert 45 degrees to radians and assigns the value to a

variable.

U=l ldue o>l Hau>

Vgl agly d=o,ull
Python Programming

(9) 3, 8 olxs

w=sxodldae o>l jau> D

wow | aobil Uludi pawd Vol Al axo a8 il

A sequence is an object that contains multiple items of data. The items that are in a sequence ar

one after the other.

Python provides various ways to perform operations on the items that are stored in a sequence. Y

perform operations on a sequence to examine and manipulate the items stored in it.

There are several different types of sequence objects in Python. In this course, we will look at two

fundamental sequence types: lists and tuples.
Both lists and tuples are sequences that can hold various types of data.

The difference between lists and tuples is simple: a list is mutable, which means that a pro
change its contents, but a tuple is immutable, which means that once it is created, its contents c

changed.

We will explore some of the operations that you may perform on these sequences.

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

A list is an object that contains multiple data items. Each item that is stored in a list is called an el

Here is a statement that creates a list of integers: numbers = [2, 4, 6, 8, 10]
The items that are enclosed in brackets and separated by commas are the list elements.
A list can hold items of different types, as shown here: info = ['Alicia'., 27, 1550.87]
You can use the print function to display an entire list, as shown here: print(numbers)
Python also has a built-in list() function that can convert certain types of objects to lists.

Here is an example: numbers = list(range(1, 10, 2))

Recall from Week 5 that when you pass three arguments to the range function, the first argume

starting value, the second argument is the ending limit, and the third argument is the step value

This statement will assign the list [1, 3, 5, 7, 9] to the numbers variable.

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

The Repetition Operator and len Function

>

You learned in Week 3 that the * symbol multiplies two numbers. However, when the operand
side of the * symbol is a sequence (such as a list) and the operand on the right side is

becomes the repetition operator.

The repetition operator makes multiple copies of a list and joins them all together.

1 >>> numbers = [0] * & 1 >>> numbers = [1, 2, 3] * 3
2 >>> print(numbers) 2 >>> print(numbers)
3 10, 0, 0, 0, 0] 3 01, 2, 3,1, 2, 3, 1, 2, 3]

You can iterate over a list with the for loop. Also, Python has a built-in function named len th

the length of a sequence, such as a list.

numbers = [99, 100, 101, 102]
for n in numbers:
print(n)

my_list = [10, 20, 30, 40]
size = len(my_list)

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

Another way that you can access the individual elements in a list is with an index. Each element

has an index that specifies its position in the list.

Indexing starts at 0, so the index of the first element is 0, the index of the second element is 1,

forth. The index of the last element in a list is 1 less than the number of elements in the list.
For example, the following statement creates a list with 4 elements: my_list = [10, 20, 30, 40]

The indexes of the elements in this list are 0, 1, 2, and 3. We can print the elements of the list wi

following statement: print(my_list[0], my_Tlist[1], my_1list[2], my_Tlist[3])

You can also use negative indexes with lists to identify element positions relative to the end of
The index -1 identifies the last element in a list, -2 identifies the next to last element, an\d so for
print(my_list[-1], my_list[-2], my_list[-3], my_list[-4])

40 30 20 10 \

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

Changing Lists and Concatenating Lists

» Lists in Python are mutable, which means their elements can be changed. Consequently, an e

the form list[index] can appear on the left side of an assignment operator.

numbers = [1, 2, 3, 4, 5]
print(numbers)

numbers[0] = 99
print(numbers)

[1, 2, 3, 4, 5]

[99, 2, 3, 4, 5]

N

» To concatenate means to join two things together. You can use the + operator to concaten

Below is an example:

» You can also use the += augmented assignment operator to concatenate one list to another. B

example: .
list1 = [1, 2, 3, 4] Tist1 = [1, 2, 3, 4]
1ist2 = [5, 6, 7, 8] list2 = [5, 6, 7, 8]
1ist3 = Tist1 + Tist2 Tist1 += Tist2
[1, 2, 3, 4, 5, 6, 7, 8] [1, 2, 3, 4, 5, 6, 7, 8]

ol e o>l Hau D

What will the following code display?

numbers = [1, 2, 3, 4, 5]
numbers[2] = 99
print (numbers)

> numbers = list(range(3))
print (numbers)

>numbers = [10] * 5
print (numbers)
numbers = list(range(1, 10, 2))

for n in numbers:
print(n)

> numbers = [1, 2, 3, 4, 5]
print(numbers[-2])

How do you find the number of elements in a list?

U=l ldue o>l Hau>

What will the following code display?

numbers1 = [1, 2, 3]
numbers2 = [10, 20, 30]

> numbers3 = numbers1 + numbers2
print(numbers1)
print(numbers2)
print(numbers3)

numbers1 = [1, 2, 3]
numbers2 = [10, 20, 30]
> numbers2 += numbers1
print(numbers1)
print(numbers2)

U=l ldue o>l Hau>

Vgl agly d=o,ull
Python Programming

(10) p3, & rolx0

w=sxodldae o>l jau> D

wow | aobil Uludi pawd Vol Al axo a8 il

You have seen how indexing allows you to select a specific element in a sequence.

Sometimes you want to select more than one element from a sequence. In Python, you ca

expressions that select subsections of a sequence, known as slices.

A slice is a span of items that are taken from a sequence. When you take a slice from a list, you

span of elements from within the list.
To get a slice of a list, you write an expression in the following format: Tist_name[start : end]

In the format, start is the index of the first element in the slice, and end is the index marking t
the slice. The expression returns a list containing a copy of the elements from start up to

including) end. \
1 >>> numbers = [1, 2, 3, 4, 5] 4 >>> print(numbers[1:3])
2 >>> print(numbers) 5 [2, 3]
3 [1, 2, 3, 4, 5] 5 »»>

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

List Slicing

» If you leave out the start index in a slicing expression, Python uses 0 as the starting index.

! >>> numbers = [1, 2, 3, 4, 5] 4 >>> print(numbers[:3])
2 >>> print(numbers) 5 [1, 2, 3]
3 [1, 2, 3, 4, 5] £ >>>

» If you leave out the end index in a slicing expression, Python uses the length of the list as t

1 >>> pnumbers = [1, 2, 3, 4, 5] 4 >>> print(numbers[2:])
2 >>> print(numbers) 5 [3, 4, 5]
3 [1, 2, 3, 4, 5] £ >>>

» |If you leave out both the start and end index in a slicing expression, you get a copy of the enti

! >>> pnumbers = [1, 2, 3, 4, 5] 4 >>> print(numbers|:])(Enter)
2 >>> print(numbers) 5 [1, 2, 3, 4, 5]
3 [1, 2, 3, 4, 5] 6 >>>

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

The slicing examples we have seen so far get slices of consecutive elements from lists.

Slicing expressions can also have step value, which can cause elements to be skipped in the list.
The following interactive mode session shows an example of a slicing expression with a step value:

1 >>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 4
2 >>> print(numbers) 5 [2, 4, 6, 8]
3 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 6

You can also use negative numbers as indexes in slicing expressions to reference positions relativ
end of the list. Python adds a negative index to the length of a list to get the position referenc

index.
\

1 =>>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 4 >>> print(numbers[-5:])
2 >>> print(numbers) 5 [6, 7, 8, 9, 10]
3 [1, 2, 3, 4, 5,6, 7, 8,9, 10] 6 >

ol e o>l Hau D

What will the following code display?

numbers = [1, 2, 3, 4, 5]
>’my_1ﬁst = numbers[1:3]

print(my_1list)
numbers = [1, 2, 3, 4, 5]
my_list = numbers[1:]
print(my_list)
numbers = [1, 2, 3, 4, 5]
my_list = numbers[:1]
print(my_1list)

numbers = [1, 2, 3, 4, 5]
my_list = numbers|:]
print(my_1list)

numbers = [1, 2, 3, 4, 5]
my_list = numbers[-3:]
print(my_1list)

U=l ldue o>l Hau>

wow | aobil Uludi pawd Vol Al axo a8 il

In Python, you can use the in operator to determine whether an item is contained in a list. Her

format of an expression written with the in operator to search for an item in a list: item in [list

In the general format, item is the item for which you are searching, and list is a list. The expr

returns true if item is found in the list, or false otherwise.

Program (in_Tlist.py)

This program demonstrates the in operator
used with a list.

1
Vi
3
4 def main():

5 # Create a list of product numbers.

6 prod_nums = ['V475", 'F987', 'Q143', 'R688']
.

8

9

Get a product number to search for.
search = input('Enter a product number: ')

10
11
12
13
14
15
16
17

18

if search in prod_nums:

print(search, 'was found in the 1list."')
else:

print(search, 'was not found in the list.')

Call the main function.
main()

ol e o>l Hau D

wow | aobil Uludi pawd Vol Al axo a8 il

Lists have numerous Table 7-1 A few of the list methods

Method Description

append (item) Adds item to the end of the list.
you to add elements, | index(item)

methods that allow

Returns the index of the first element whose value is equal to item.

remove elements, A ValueError exception is raised if item is not found in the list.

insert(index, item) Inserts item into the list at the specified index. When an item is

change the ordering inserted into a list, the list is expanded in size to accommodate the new

of elements, and so item. The item that was previously at the specified index, and all the
items after it, are shifted by one position toward the end of the list.
forth. We will look at No exceptions will occur if you specify an invalid index. If you spec-

ify an index beyond the end of the list, the item will be added to the

a few of these end of the list. If you use a negative index that specifies an invalid

methods, which are position, the item will be inserted at the beginning of the list.

. . sort 1 ' ' ' 1
listed in next Table . () Sorts the items in the_ list so they appear in ascending order (from the
lowest value to the highest value).

remove (item) Removes the first occurrence of item from the list. A ValueError
exception is raised if item is not found in the list.

reverse() Reverses the order of the items in the list.

ol e o>l Hau D

Ul @nkail Gludi paud Vgl agl aseo U auall osuaall

The insert Method

Program -~ (insert_list.py)
_ _ 14 # Display the list again.
1 # This program demonstrates the insert method. 15 orint('The 1ist after the insert:')
‘ ‘ 16 print(names)
3 def main(): 17
: # Create ? 115t.W1Fh Some Pam?s: , 18 # Call the main function.
5 names = ['James', 'Kathryn', 'Bill’'])
5 19 main()
7 # Display the list.
8 print('The list before the insert:') Program Quipert
9 print (names) The 1ist before the insert:
10 ['James', "Kathryn', 'Bill1']
11 # Insert a new name at element 0.

The 1ist after the insert:
12 names.insert(0, 'Joe')

13 ['Joe', "James', "Kathryn', 'Bill']

ol e o>l Hau D

Ul @nkail Gludi paud

Uil asly asxo I

The index Method

Program (index_list.py)

1 # This program demonstrates how to get the

2 # index of an item in a list and then replace

3 # that item with a new item.

4

5 def main():

6 # Create a list with some items.

[food = ['Pizza', 'Burgers’', 'Chips’']

a

9 # Display the list.

10 print('Here are the items in the food Tist:')
11 print(food)

12

13 # Get the item to change.

14 item = input('Which item should I change? ')
15

16 try:

17 # Get the item's index in the list.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

except ValueError:

Call the main function.

item_index = food.index(item)

Get the value to replace it with.
new_item = input('Enter the new value: ')

Replace the old item with the new item.
food[item_index] = new_item

Display the list.
print('Here is the revised list:')

print(food)

print('That item was not found in the Tist.')

ol e o>l Hau D

What will the following code display?

names = ['Jim', 'Jill1', "John', 'Jasmine']
if 'Jasmine' not in names:
print('Cannot find Jasmine.")
else:
print("Jasmine's family:")
print(names)

Assume the following statement appears in a program:

names = []
Which of the following statements would you use to add the
string ‘Wendy’ to the list at index 0? Why would you select
this statement instead of the other?

a. names[0] = "Wendy'
b. names.append('Wendy')

U=l ldue o>l Hau>

	Python_Programming_Part_One
	Python_Programming_Part_Two

