Vectors

A vector is an ordered list of numbers , as $\mathbf{Z}=[\mathbf{2 , 4 , 6 , 8}]$ which called row vector and
$A=\left[\begin{array}{c}3 \\ 5 \\ 76\end{array}\right]$ which called column vector.

Matrices

A matrix is a set of numbers ordered in rows and columns vectors, as in the example. Consider
the 3×3 matrix $A=\left[\begin{array}{ccc}2 & 5 & 6 \\ -6 & 7 & 9 \\ 12 & 55 & 13\end{array}\right]$
Note that the matrix elements in any row are separated by commas, and can also be separated by spaces.
Definition 1:-Thesize of a matrix is given by(number of its rows x number of its columns).
Definition2:-Two matrices A, B are equal if and only if they are from the same size and the symmetric elements are equal, in other words $A=B \Leftrightarrow a_{i j}=b_{i j} \forall i=1,2, . ., m$ and $j=1,2,3, \ldots ., n$.

The general form of a matrix from size mxn is written as:-
$\mathrm{A}=\left[\begin{array}{ccccc}a_{11} & a_{12} & \cdots \cdots & \cdots \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots \cdots & \cdots \cdots & a_{2 n} \\ a_{31} & a_{32} & \cdots \cdots & \cdots \cdots & a_{3 n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m 1} & a_{m 2} & \cdots \cdots & \cdots \cdots & a_{m n}\end{array}\right]$ or $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right], \mathrm{i}=1,2,3, \ldots, \mathrm{~m}, \mathrm{j}=1,2,3, \ldots, \mathrm{n}$.

Kinds of matrices :-

1)Zero matrix (Null):- all its elements equal zero, denoted by O.
2)Square matrix is a matrix which its rows equal to its columns .
3)Lower triangular matrix is a square matrix which all $\mathrm{a}_{\mathrm{ij}}=0, \forall \mathrm{i}<\mathrm{j}$.
4)Upper triangular matrix is a square matrix which all $\mathrm{a}_{\mathrm{ij}}=0, \forall \mathrm{i}>\mathrm{j}$.
5)Diagonal matrix is a square matrix which all $a_{i j}$ not lies on main diagonal equal to zero,

And may be denoted as $\operatorname{diag}\left(\mathrm{a}_{11}, \mathrm{a}_{22}, \mathrm{a}_{33}, \ldots \ldots \ldots, \mathrm{a}_{\mathrm{nn}}\right)$.
6)Scalar matrix is a diagonal matrix which $\operatorname{diag}(\mathrm{k}, \mathrm{k}, \mathrm{k}, \ldots . ., \mathrm{k})$ such that k is a constant number .
7)Identity matrix is a diagonal matrix which $\operatorname{diag}(1,1,1, \ldots ., 1)$ and denoted by I .

Examples:-

1) $A=\left[\begin{array}{ccc}6 & 5 & 42 \\ 0 & 2 & 8 \\ 6 & -4 & 9 \\ 8 & 11 & -10\end{array}\right]$ is a matrix from size 4×3.
2) $\mathrm{B}=\left[\begin{array}{cccc}2 & 43 & 5 & 4 \\ 0 & 0 & -5 & 6 \\ 3 & 22 & 3.4 & \sqrt{6} \\ 2.45 & 89 & \pi & 8\end{array}\right]$ is a square matrix from size 4 .
3) $\mathrm{G}=\left[\begin{array}{ccc}2 & 0 & 0 \\ -6 & 7 & 0 \\ 12 & 55 & 13\end{array}\right]$ is 10wer triangular matrix from size 3 , and
$\mathrm{F}=\left[\begin{array}{ccc}2 & 5 & 6 \\ 0 & 7 & 9 \\ 0 & 0 & 13\end{array}\right] \quad$ is upper triangular matrix from size 3 .
4) $\mathrm{D}=\left[\begin{array}{llll}4 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 6\end{array}\right]$ is a diagonal matrix from size 4 .
5) $S=\left[\begin{array}{llll}4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4\end{array}\right]$ is a scalar matrix from size 4 .
6) $I=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$ is Identity matrix from size 5 .

Operations on matrices :-

@1)Addition of matrices:- If two matrices \mathbf{A} and \mathbf{B} are from the same size, their (element-byelement) sum is obtained by typing $\mathbf{A}+\mathbf{B}=\mathbf{C}=\left[c_{i j}\right]$, such that $c_{i j}=a_{i j}+b_{i j}, \forall i, j$.
Likewise, the difference of \mathbf{A} and \mathbf{B} represents by $\mathbf{A}-\mathbf{B}=\mathrm{D}=\left[\mathrm{a}_{\mathrm{ij}}-b_{\mathrm{ij}}\right], \forall \mathrm{i}, \mathrm{j}$.
Example :- If $\mathrm{A}=\left[\begin{array}{ll}6 & 5 \\ 7 & 0 \\ 8 & 1\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}2 & 5 \\ 8 & 3 \\ 14 & 7\end{array}\right]$, then $\mathrm{A}+\mathrm{B}=\left[\begin{array}{cc}8 & 10 \\ 15 & 3 \\ 22 & 8\end{array}\right]$.
$A-B=\left[\begin{array}{cc}4 & 0 \\ -1 & -3 \\ -6 & -6\end{array}\right], B-A=\left[\begin{array}{cc}-4 & 0 \\ 1 & 3 \\ 6 & 6\end{array}\right]$.
We can also add a scalar (a single number) to a matrix; $\mathbf{A}+\mathbf{c}$ adds \mathbf{c} to eachelement in \mathbf{A}. Likewise, A-c subtracts the number c from eachelementof \mathbf{A}, and cAmultiply c by each element of \mathbf{A}.

Example:- $\mathrm{A}+2=\left[\begin{array}{cc}8 & 7 \\ 9 & 2 \\ 10 & 3\end{array}\right], \mathrm{B}-4=\left[\begin{array}{cc}-2 & 1 \\ 4 & -1 \\ 10 & 3\end{array}\right], 5 \mathrm{~A}=\left[\begin{array}{cc}30 & 25 \\ 35 & 0 \\ 40 & 5\end{array}\right]$.

Properties of matrices :-

For any matrices A , B , C , Zero matrix O from the same size , and scalar numbers h, k :-

1) $A+B=B+A$.
2) $A+(B+C)=(A+B)+C$.
3) $\mathrm{A}+\mathrm{O}=\mathrm{O}+\mathrm{A}=\mathrm{A}$.
4) $\mathrm{A}-\mathrm{A}=\mathrm{O}$.
5) $h(A+B)=h A+h B$.
6) $(\mathrm{h}+\mathrm{k}) \mathrm{A}=\mathrm{hA}+\mathrm{kA}$.
7) (hk) $A=h(K a)$.
8) $1 \mathrm{~A}=\mathrm{A}, 0 \mathrm{~A}=\mathrm{O}$.
@,2) Multiplication of matrices :-
If \mathbf{A} and \mathbf{B} are multiplicatively compatible (that is, if \mathbf{A} is $n \times m$ and \mathbf{B} is $m \times p$), then their product $\mathbf{A}^{*} \mathbf{B}$ is $n \times p$. Recall that the element of $\mathbf{A}^{*} \mathbf{B}$ in theithrow and j th column is the sum of the products of the elements from theithrow of \mathbf{A} times the elements from the j thcolumn of \mathbf{B}, that is,
$(\mathbf{A} * \mathbf{B})_{i j}=\mathbf{A}_{i k} \mathbf{B}_{k j}, \quad 1 \leq i \leq n, \quad 1 \leq j \leq p$.
Example :-
If $A=\left[\begin{array}{ccc}1 & 3 & -5 \\ 0 & 5 & 6 \\ 2 & -4 & 7\end{array}\right], B=\left[\begin{array}{cccc}5 & 2 & 0 & 3 \\ 2 & 11 & 8 & 1 \\ 6 & -2 & 4 & -1\end{array}\right]$, find $A B$, $B A$ if possible .

Solution:-

$a_{11}=\left[\begin{array}{lll}1 & 3 & -5\end{array}\right]\left[\begin{array}{l}5 \\ 2 \\ 6\end{array}\right]=1^{*} 5+3^{*} 2+(-5)^{*} 6=-19, a_{12}=\left[\begin{array}{lll}1 & 3 & -5\end{array}\right]\left[\begin{array}{c}2 \\ 11 \\ -2\end{array}\right]=1 * 2+3^{*} 11+(-5)^{*}(-2)=45$,
$a_{13}=\left[\begin{array}{lll}1 & 3 & -5\end{array}\right]\left[\begin{array}{l}0 \\ 8 \\ 4\end{array}\right]=1^{*} 0+3^{*} 8+(-5)^{*} 4=4 \quad, a_{14}=\left[\begin{array}{lll}1 & 3 & -5\end{array}\right]\left[\begin{array}{c}3 \\ 1 \\ -1\end{array}\right]=1^{*} 3+3^{*} 1+(-5)^{*}(-1)=11$,
$\mathrm{a}_{21}=\left[\begin{array}{lll}0 & 5 & 6\end{array}\right]\left[\begin{array}{l}5 \\ 2 \\ 6\end{array}\right]=0^{*} 5+5^{*} 2+6^{*} 6=46, \mathrm{a}_{22}=\left[\begin{array}{lll}0 & 5 & 6\end{array}\right]\left[\begin{array}{c}2 \\ 11 \\ -2\end{array}\right]=0 * 2+5^{*} 11+6^{*}(-2)=43$,
$\mathrm{a}_{23}=\left[\begin{array}{lll}0 & 5 & 6\end{array}\right]\left[\begin{array}{l}0 \\ 8 \\ 4\end{array}\right]=0 * 0+5^{*} 8+6 * 4=64 \quad, \mathrm{a}_{24}=\left[\begin{array}{ll}0 & 5 \\ 6\end{array}\right]\left[\begin{array}{c}3 \\ 1 \\ -1\end{array}\right]=0 * 3+5^{*} 1+6^{*}(-1)=-1$,
$a_{31}=\left[\begin{array}{lll}2 & -4 & 7\end{array}\right]\left[\begin{array}{l}5 \\ 2 \\ 6\end{array}\right]=2^{*} 5+(-4)^{*} 2+7^{*} 6=42, a_{32}=\left[\begin{array}{lll}2 & -4 & 7\end{array}\right]\left[\begin{array}{c}2 \\ 11 \\ -2\end{array}\right]=2^{*} 2+(-4)^{*} 11+7^{*}(-2)=-54$,
$\mathrm{a}_{33}=\left[\begin{array}{lll}2 & -4 & 7\end{array}\right]\left[\begin{array}{l}0 \\ 8 \\ 4\end{array}\right]=2^{*} 0+(-4)^{*} 8+7^{*} 4=-4 \quad, a_{34}=\left[\begin{array}{lll}2 & -4 & 7\end{array}\right]\left[\begin{array}{c}3 \\ 1 \\ -1\end{array}\right]=2 * 3+(-4)^{*} 1+7^{*}(-1)=-5$,
$\therefore A B=\left[\begin{array}{cccc}-19 & 45 & 4 & 11 \\ 46 & 43 & 64 & -1 \\ 42 & -54 & -4 & -5\end{array}\right]$
BA is not possible because number of columns of B not equal to rows of A.
Proposition

1) If A is a square matrix from size n, then $A I_{n}=\ln A=A$.
2) If $A(m x n), B(n x p), C(p x q)$, then $\quad A(B C)=(A B) C$.

Definition Let A is a matrix from size $n x m$, then the transpose of A is a matrix from size $m x n$ denoted by A^{\top} by changing rows with columns .

Example :-
If $A=\left[\begin{array}{ccc}1 & 3 & -5 \\ 0 & 5 & 6 \\ 2 & -4 & 7\end{array}\right], B=\left[\begin{array}{cccc}5 & 2 & 0 & 3 \\ 2 & 11 & 8 & 1 \\ 6 & -2 & 4 & -1\end{array}\right]$, find A^{\top}, B^{\top}.
$A^{\top}=\left[\begin{array}{ccc}1 & 0 & 2 \\ 3 & 5 & -4 \\ -5 & 6 & 7\end{array}\right], \quad \mathrm{B}^{\top}=\left[\begin{array}{ccc}5 & 2 & 6 \\ 2 & 11 & -2 \\ 0 & 8 & 4 \\ 3 & 1 & -1\end{array}\right]$

Proposition

1) If A, B two matrices from the same size then :- 11) $\left.\left(A^{\top}\right)^{\top}=A, 12\right)(A+B)^{\top}=A^{\top}+B^{\top}$ 2) If $A(m x n), B(n x p)$ then $(A B)^{\top}=B^{\top} A^{\top}$.

Example:-

Verify the proposition above for the matrices $A=\left[\begin{array}{cc}2 & 3 \\ -4 & 5\end{array}\right], B=\left[\begin{array}{ll}9 & 6 \\ 0 & 7\end{array}\right]$

Definition:-

1)The square matrix A is called symmetric matrix if $A^{\top}=A$, in other words $a_{i j}=a_{j i}, \forall i \neq j$.
2)The square matrix A is called skew-symmetric matrix if $A^{\top}=-A$, in other words $a_{i j}=-a_{j i}$, $\forall i \neq j$ and the elements of main diagonal $=0$.
Examples:-

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 3 & -5 \\
3 & 5 & 6 \\
-5 & 6 & 7
\end{array}\right] \text { is a symmetric matrix } \\
& \mathrm{F}=\left[\begin{array}{ccc}
0 & -7 & 12 \\
7 & 0 & -65 \\
-12 & 65 & 0
\end{array}\right] \text { is a skew-symmetric matrix . }
\end{aligned}
$$

Definition:- A square matrix A from size n is called (orthogonal matrix) if $A A^{\top}=A^{\top} A=I_{n}$.
Question :- Prove that $A=\left[\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right]$ is an orthogonal matrix ?
Definition:-Let A is a square matrix of size n, then the matrix B is called the invers matrix of A if and only if $A B=B A=I_{n}$ denoted by A^{-1}.

Notes

- Not for every square matrix an inverse .
- If A is an orthogonal matrix, then $A^{\top}=A^{-1}$.
- IfA is a diagonal matrix such that $\mathbf{D}=\left[\begin{array}{cccc}a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d\end{array}\right]$, then
$\mathrm{A}^{-1}=\left[\begin{array}{cccc}1 / a & 0 & 0 & 0 \\ 0 & 1 / b & 0 & 0 \\ 0 & 0 & 1 / c & 0 \\ 0 & 0 & 0 & 1 / d\end{array}\right]$.
Question :- If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 / 2 & \sqrt{3} / 2 \\ 0 & -\sqrt{3} / 2 & 1 / 2\end{array}\right]$ orthogonal matrix, find A^{-1} ?

Proposition

If A, B are two square matrices of size n and they have inverse for them ,then $(A B)^{-1}=B^{-1} A^{-1}$.

$$
\begin{align*}
\text { Proof :- }(A B) \cdot\left(B^{-1} A^{-1}\right)=A(B B-1) A^{-1}=A A^{-1}=I_{n} \tag{1}\\
\left(B^{-1} A^{-1}\right) \cdot(A B)=B^{-1}\left(A^{-1} A\right) B=B^{-1} B=I_{n} \tag{2}
\end{align*}
$$

$\therefore(A B)^{-1}=B^{-1} A^{-1}$.
Question :- Prove that $\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$, if A is a square matrix and has an inverse?
Definition:-For any square matrix A from size n there exist Only one number called the determinant of the matrix denoted by $|A|$.
Examples:-
$\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|$ is a determinant from size 2 and its value $=a_{11} \cdot a_{22}-a_{21} a_{12}$.
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$ is a determinant from size 3 and its value calculate as in the below :-

a_{11}	a_{12}	a_{13}	$a_{11} a_{12}$	
a_{21}	a_{22}	a_{23}	a_{21}	a_{22}
a_{31}	a_{32}	a_{33}	a_{31}	a_{32}

[a11.a22.a33 $\left.+a_{12} \cdot \mathrm{a}_{23} \cdot \mathrm{a}_{11}+\mathrm{a}_{13} \cdot \mathrm{a}_{21} \cdot \mathrm{a}_{32}\right]-\left[\mathrm{a}_{13} \cdot \mathrm{a}_{22} \cdot \mathrm{a}_{31}+\mathrm{a}_{11} \cdot \mathrm{a}_{23} \cdot \mathrm{a}_{32}+\mathrm{a}_{12} \cdot \mathrm{a}_{21} \cdot \mathrm{a}_{33}\right]$.
Definition :- The minor of $|A|$ is a determinant from $|A|$ after subtracting equal number from rows and columns of $|A|$.

The minor of $a_{11}=\left|M_{11}\right|=\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|$ and the minor of $\mathrm{a}_{32}=\left|M_{32}\right|=\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{21} & a_{23}\end{array}\right|$
Definition :- The cofactor of the element $\mathrm{a}_{\mathrm{ij}}=(-1)^{i+j} .\left|M_{i j}\right|$ denoted by A_{IJ}.

Proposition

The value of any determinant equal to sum of multiplication elements of any rows(columns) by its cofactors.
Such that $|A|=a_{i 1} A_{i 1}+a_{i 2} A_{i 2}+\mathrm{a}_{i 3} \mathrm{~A}_{\mathrm{i} 3}+\ldots \ldots \ldots . . .+\mathrm{a}_{i n} \mathrm{~A}_{\mathrm{in}} \quad, \mathrm{I}=1,2,3, \ldots \ldots \ldots . ., \mathrm{n} \quad O R$
Example :- Find the value of $\left|\begin{array}{ccccc}1 j \\ A_{1 j}+a_{2 j} & A_{2 j}+a_{3 j} A_{3 j+\ldots \ldots \ldots a n d ~} A_{n j} \\ 1 & 4 & 9 & 2 \\ 2 & 0 & 3 & 0 \\ 5 & 0 & 0 & 7 \\ -3 & 0 & 9 & -2\end{array}\right|$

Proposition

If A is a square matrix and $|A| \neq 0$, then $\mathrm{A}^{-1}=\frac{1}{|A|} \cdot\left[A_{i j}\right]$.
Example:- Find A^{-1} of $\left|\begin{array}{ccc}2 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & 2 & 1\end{array}\right|, \quad\left|\begin{array}{cccc}1 & 4 & 9 & 2 \\ 2 & 0 & 3 & 0 \\ 5 & 0 & 0 & 7 \\ -3 & 0 & 9 & -2\end{array}\right|$
Solving the system of linear equations by matrices
If we have the system of linear equations as below:-
$a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots \ldots \ldots \ldots \ldots \ldots . .+a_{1 n} x_{n}=b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots+a_{2 n} x_{n}=b_{2}$
$a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\ldots \ldots \ldots \ldots \ldots \ldots . .+a_{3 n} x_{n}=b_{3}$

$a_{m 1} X_{1}+a_{m 2} X_{2}+a_{m 3} X_{3}+$ \qquad $+a_{m n} x_{n}=b_{m}$
Then $\mathrm{A}=\left[\begin{array}{ccccc}a_{11} & a_{12} & \cdots \cdots & \cdots \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots \cdots & \cdots \cdots & a_{2 n} \\ a_{31} & a_{32} & \cdots \cdots & \cdots \cdots & a_{3 n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m 1} & a_{m 2} & \cdots \cdots & \cdots \cdots & a_{m n}\end{array}\right], \mathrm{X}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ \cdot \\ \cdot \\ x_{n}\end{array}\right], \quad \mathrm{B}=\left[\begin{array}{c}b_{1} \\ b_{2} \\ b_{3} \\ \cdot \\ \cdot \\ b_{m}\end{array}\right]$
\therefore The solution to the system above is $\quad \mathrm{X}=\mathrm{A}^{-1} \cdot \mathrm{~B}$
Example :-
Solve the system of linear equations:-
$2 x+y=z$
$z-y+x=6$
$x+2 y+z-3=0$
The solution
First :- we must arrange the equations as :-
$2 x+y-z=0$
$x-y+z=6$
$x+2 y+z=3$
$\mathrm{A}=\left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & 2 & 1\end{array}\right], \mathrm{X}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \quad, \quad \mathrm{B}=\left[\begin{array}{l}0 \\ 6 \\ 3\end{array}\right]$

$|A|=\left\lvert\,$| 2 | 1 | -1 | 2 | 1 |
| :---: | :---: | :---: | :--- | :--- |
| 1 | -1 | 1 | 1 | -1 |
| 1 | 2 | 1 | 1 | 2 |$=-9 \neq 0\right.$

$A_{11}=\left|\begin{array}{cc}-1 & 1 \\ 2 & 1\end{array}\right|=-3 \quad, A_{12}=-1\left|\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right|=0 \quad, A_{13}=\left|\begin{array}{cc}1 & -1 \\ 1 & 2\end{array}\right|=3$
$A_{21}=-1\left|\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right|=-3, A_{22}=\left|\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right|=3 \quad, \quad A_{23}=-1\left|\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right|=-3$
$A_{31}=\left|\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right|=0, A_{32}=-1\left|\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right|=-3, A_{33}=\left|\begin{array}{ll}2 & 1 \\ 1 & -1\end{array}\right|=-3$
$\left[A_{i}\right]=\left[\begin{array}{ccc}-3 & 0 & 3 \\ -3 & 3 & -3 \\ 0 & -3 & -3\end{array}\right] \quad, \quad\left[A_{i j}\right]^{\top}=\left[\begin{array}{ccc}-3 & -3 & 0 \\ 0 & 3 & -3 \\ 3 & -3 & -3\end{array}\right]$,
$\therefore A^{-1}=\frac{1}{-9}\left[\begin{array}{ccc}-3 & -3 & 0 \\ 0 & 3 & -3 \\ 3 & -3 & -3\end{array}\right]$
$\therefore X=\frac{1}{3}\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & -1 & 1 \\ -1 & 1 & 1\end{array}\right]\left[\begin{array}{l}0 \\ 6 \\ 3\end{array}\right]=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]$

Questions

1) If $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 3 & 4 & 5 \\ 6 & 7 & -2\end{array}\right], B=\left[\begin{array}{ccc}9 & 0 & 12 \\ 5 & 6 & 1 \\ -1 & 0 & 0\end{array}\right]$, Find (1) $2 A-3 B,(2) l_{3}+4 B-3 B$
(3) $A B, B A$, what do you notice ?
2) Write the matrix A from size 3×4 such that $\mathrm{A}=\left\{\begin{array}{cl}7, & \forall i<\mathrm{j} \\ 3, & \forall i=j \\ j-i & , \quad \forall i>\mathrm{j}\end{array}\right.$
3) Find the value of $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}$ if $\left[\begin{array}{cc}3 x & 1 \\ z & 3+2 t\end{array}\right]-2\left[\begin{array}{cc}x & -y \\ 3 z & -2 t\end{array}\right]=3\left[\begin{array}{cc}-1 & x-y \\ x+y & 2 z\end{array}\right]$
4) If $A=\left[\begin{array}{ccc}2 & 4 & 1 \\ -1 & 3 & -2 \\ 2 & -3 & 5\end{array}\right], B=\left[\begin{array}{c}-11 \\ -16 \\ 21\end{array}\right]$, find the matrix X which satisfy $A X=B$.
5) If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 / 2 & \sqrt{3} / 2 \\ 0 & -\sqrt{3} / 2 & 1 / 2\end{array}\right]$ is orthogonal matrix , find A^{-1}.
6) Write a symmetric matrix from size 4 .
7) Write a skew-symmetric matrix from size 5 .
8) Is there exist an inverse matrix for $A=\left[\begin{array}{cc}2 & -1 \\ 0 & 0\end{array}\right]$?
9) SOlve the following system of linear equations:-
(1)

$$
\begin{gathered}
2 x_{1}-4 x_{2}-x_{3}=2 \\
3 x_{2}-2 x_{3}+x_{1}=0 \\
-6+3 x_{1}=2 x_{2}+3 x_{3} \\
\\
10 x_{3}+6 x_{2}=9-3 x_{1} \\
x_{1}+x_{2}=4-x_{3} \\
3 x_{2}+2 x_{1}+4 x_{3}=0
\end{gathered}
$$

(2)
10) Find the value of $\left|\begin{array}{cccc}4 & 5 & -6 & -1 \\ 2 & 8 & 5 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & -2\end{array}\right|$
11) If $A=\left[\begin{array}{ccc}2 & -2 & 1 \\ 0 & 4 & 0 \\ 11 & 8 & -5\end{array}\right], B=\left[\begin{array}{cc}8 & 7 \\ 9 & 2 \\ 10 & 3\end{array}\right], C=\left[\begin{array}{cc}0 & 90 \\ 2 & 4 \\ -4 & 12\end{array}\right]$, Is $A .(B+C)=A \cdot B+A \cdot C$?
12) Full the following statements with suitable words :-
a) Tow matrices are equal if and only if. \qquad
\qquad
b) Lower triangular matrix is \qquad
c) Upper triangular matrix is \qquad
d) Diagonal matrix is \qquad
e) We can multiply the matrix A by the matrix B if
f) A is a symmetric matrix if and only if \qquad
g) IF the matrix $A=-A^{\top}$ then A is called \qquad
h) If $A B=B A=I_{n}$ then B is called \qquad
t) The minor to $a_{i j}$ of the determinant A is
 \qquad
13) For the matrices $A=\left[\begin{array}{ccc}2 & -2 & 1 \\ 0 & 4 & 0 \\ 11 & 8 & -5\end{array}\right], B=\left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & 2 & 1\end{array}\right], C=\left[\begin{array}{ccc}1 & 0 & 2 \\ 3 & 5 & -4 \\ -5 & 6 & 7\end{array}\right]$

Verify the following :-
1- $A+B=B+A$
2- $A+(B+C)=(A+B)+C$
3- $A+O=O+A=A$
4- $C-C=O$
5- $\left(B^{\top}\right)^{\top}=B$
6- $\mathrm{Al}_{3}=\mathrm{I}_{3} \mathrm{~A}=\mathrm{A}$
7- $A(B C)=(A B) C$
8- $\quad(B+C)^{\top}=B^{\top}+C^{\top}$
Functions and differentiation

