Vectors

A vector is an ordered list of numbers, as Z = [2,4,6,8] which called row vector and

$$\mathbf{A} = \begin{bmatrix} 3 \\ 5 \\ 76 \end{bmatrix}$$
 which called column vector

Matrices

A matrix is a set of numbers ordered in rows and columns vectors, as in the example. Consider

the 3 ×3 matrix $A = \begin{bmatrix} 2 & 5 & 6 \\ -6 & 7 & 9 \\ 12 & 55 & 13 \end{bmatrix}$

Note that the matrix *elements* in any row are separated by commas, and can also be separated by spaces.

Definition 1:-Thesize of a matrix is given by(number of its rows x number of its columns). **Definition 2:-**Two matrices A, B are equal if and only if they are from the same size and the symmetric elements are equal, in other words $A = B \Leftrightarrow a_{ij} = b_{ij} \forall i=1,2,...,m$ and j=1,2,3,...,n.

The general form of a matrix from size mxn is written as:-

 $A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ a_{31} & a_{32} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \text{ or } A = [a_{ij}] , i=1,2,3,\ldots,m, j=1,2,3,\ldots,n.$

Kinds of matrices :-

1)Zero matrix (Null):- all its elements equal zero, denoted by O.

2)Square matrix is a matrix which its rows equal to its columns .

3)Lower triangular matrix is a square matrix which all $a_{ij} = 0$, $\forall i < j$.

- 4)Upper triangular matrix is a square matrix which all $a_{ij} = 0$, $\forall i > j$.
- 5)Diagonal matrix is a square matrix which all a_{ij} not lies on main diagonal equal to zero, And may be denoted as diag $(a_{11}, a_{22}, a_{33}, \dots, a_{nn})$.
- 6)Scalar matrix is a diagonal matrix which diag(k,k,k,....,k) such that k is a constant number .
- 7)Identity matrix is a diagonal matrix which $diag(1,1,1,\ldots,1)$ and denoted by I.

Examples:-

1) A = $\begin{bmatrix} 6 & 5 & 42 \\ 0 & 2 & 8 \\ 6 & -4 & 9 \\ 8 & 11 & -10 \end{bmatrix}$ is a matrix from size 4 x 3. 2) B = $\begin{bmatrix} 2 & 43 & 5 & 4 \\ 0 & 0 & -5 & 6 \\ 3 & 22 & 3.4 & \sqrt{6} \\ 2.45 & 89 & \pi & 8 \end{bmatrix}$ is a square matrix from size 4.

3) G =	2	(0	0	ia	10 year trian and an matrix from size 2 and			
	0	, 5	55	0 13_	15	lower thanguar matrix from size 5, and			
F=	2	5	6						
	0	0	9 13		1S I	opper triangular matrix from size 3.			
4) D=	4	0	0	0		diagonal matrix from size 4			
	0	9	0	0	is a				
	0	0	8	0	15 u	nagonai mautx nom size 4 .			
	0	0	0	6					
	4	0	0	0		scalar matrix from size 4			
5) S =	0	4	0	0	is a				
5) 5 -	0	0	4	0	15 u				
	0	0	0	4					
6) I=	[1	0	0	0	0				
	0	1	0	0	0				
	0	0	1	0	0	is Identity matrix from size 5.			
	0	0	0	1	0				
	[0	0	0	0	1				
Uperat	tion,	s on	ı ma	itri	ces :	-			

(*a*1)*Addition of matrices* :- If two matrices **A** and **B** are from the same size, their (element-byelement) sum is obtained by typing $\mathbf{A} + \mathbf{B} = C = [c_{ij}]$, such that $c_{ij} = a_{ij} + b_{ij}$, $\forall i, j$. Likewise, the difference of **A** and **B** represents by $\mathbf{A} - \mathbf{B} = D = [a_{ij} - b_{ij}]$, $\forall i, j$.

Example :- If
$$A = \begin{bmatrix} 6 & 5 \\ 7 & 0 \\ 8 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 5 \\ 8 & 3 \\ 14 & 7 \end{bmatrix}$, then $A + B = \begin{bmatrix} 8 & 10 \\ 15 & 3 \\ 22 & 8 \end{bmatrix}$.
 $A - B = \begin{bmatrix} 4 & 0 \\ -1 & -3 \\ -6 & -6 \end{bmatrix}$, $B - A = \begin{bmatrix} -4 & 0 \\ 1 & 3 \\ 6 & 6 \end{bmatrix}$.

We can also add a scalar (a single number) to a matrix; A + c adds c to eachelement in A. Likewise, A - c subtracts the number c from eachelement of A, and cAmultiply c by each element of A.

	8	7		-2	1		30	25	
<i>Example</i> :- $A + 2 =$	9	2	, B-4=	4	-1	, 5A =	35	0	
	_10	3		10	3		_40	5	

Properties of matrices :-

For any matrices A , B , C , Zero matrix O from the same size ,and scalar numbers h , k :- 1) A + B = B + A . 2) A + (B + C) = (A + B) + C . 3) A + O = O + A = A .

4) A - A = O.
5) h(A + B) = hA + hB.
6) (h + k)A = hA + kA.
7) (hk)A = h(Ka).
8) 1A = A, 0A = O.
(a) 2) Multiplication of matrices :-

If **A** and **B** are multiplicatively compatible (that is, if **A** is $n \times m$ and **B** is $m \times p$), then their product **A*****B** is $n \times p$. Recall that the element of **A*****B** in the*i*throw and *j*th column is the sum of the products of the elements from the*i*throw of **A** times the elements from the *j*thcolumn of **B**, that is, $(\mathbf{A} \times \mathbf{B})_{ij} = \mathbf{A}_{ik} \mathbf{B}_{kj}, 1 \le i \le n, 1 \le j \le p$.

Example :-

If $A = \begin{bmatrix} 1 & 3 & -5 \\ 0 & 5 & 6 \\ 2 & -4 & 7 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 2 & 0 & 3 \\ 2 & 11 & 8 & 1 \\ 6 & -2 & 4 & -1 \end{bmatrix}$, find AB , BA if possible .

Solution:-

$$\mathbf{a}_{11} = \begin{bmatrix} 1 & 3 & -5 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 6 \end{bmatrix} = \mathbf{1}^* 5 + \mathbf{3}^* 2 + (-5)^* 6 = -19 , \ \mathbf{a}_{12} = \begin{bmatrix} 1 & 3 & -5 \end{bmatrix} \begin{bmatrix} 2 \\ 11 \\ -2 \end{bmatrix} = \mathbf{1}^* 2 + \mathbf{3}^* \mathbf{1} \mathbf{1} + (-5)^* (-2) = \mathbf{4} \mathbf{5}$$
$$\mathbf{a}_{13} = \begin{bmatrix} 1 & 3 & -5 \end{bmatrix} \begin{bmatrix} 0 \\ 8 \\ 4 \end{bmatrix} = \mathbf{1}^* 0 + \mathbf{3}^* \mathbf{8} + (-5)^* \mathbf{4} = \mathbf{4} \quad , \ \mathbf{a}_{14} = \begin{bmatrix} 1 & 3 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} = \mathbf{1}^* \mathbf{3} + \mathbf{3}^* \mathbf{1} + (-5)^* (-1) = \mathbf{1} \mathbf{1},$$

$$a_{21} = \begin{bmatrix} 0 & 5 & 6 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 6 \end{bmatrix} = 0*5+5*2+6*6 = 46 , a_{22} = \begin{bmatrix} 0 & 5 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 11 \\ -2 \end{bmatrix} = 0*2+5*11+6*(-2) = 43 ,$$
$$a_{23} = \begin{bmatrix} 0 & 5 & 6 \end{bmatrix} \begin{bmatrix} 0 \\ 8 \\ 4 \end{bmatrix} = 0*0+5*8+6*4 = 64 , a_{24} = \begin{bmatrix} 0 & 5 & 6 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} = 0*3+5*1+6*(-1) = -1,$$

$$a_{31} = \begin{bmatrix} 2 & -4 & 7 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 6 \end{bmatrix} = 2^{*}5 + (-4)^{*}2 + 7^{*}6 = 42, a_{32} = \begin{bmatrix} 2 & -4 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ 11 \\ -2 \end{bmatrix} = 2^{*}2 + (-4)^{*}11 + 7^{*}(-2) = -54,$$

$$a_{33} = \begin{bmatrix} 2 & -4 & 7 \end{bmatrix} \begin{bmatrix} 0 \\ 8 \\ 4 \end{bmatrix} = 2^{*}0 + (-4)^{*}8 + 7^{*}4 = -4 \quad , a_{34} = \begin{bmatrix} 2 & -4 & 7 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} = 2^{*}3 + (-4)^{*}1 + 7^{*}(-1) = -5,$$

 $\therefore AB = \begin{bmatrix} -19 & 45 & 4 & 11 \\ 46 & 43 & 64 & -1 \\ 42 & -54 & -4 & -5 \end{bmatrix}$

BA is not possible because number of columns of B not equal to rows of A . <u>*Proposition*</u>

1) If A is a square matrix from size n , then $AI_n = I_nA = A$.

2) If A(mxn), B(nxp), C(pxq), then A(BC) = (AB)C. Definition Let A is a matrix from size nxm, then the transpose of A is a matrix from size mxn denoted by A^T by changing rows with columns .

Example :-

If
$$A = \begin{bmatrix} 1 & 3 & -5 \\ 0 & 5 & 6 \\ 2 & -4 & 7 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & 2 & 0 & 3 \\ 2 & 11 & 8 & 1 \\ 6 & -2 & 4 & -1 \end{bmatrix}$, find A^{T} , B^{T} .
 $A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 5 & -4 \\ -5 & 6 & 7 \end{bmatrix}$, $B^{T} = \begin{bmatrix} 5 & 2 & 6 \\ 2 & 11 & -2 \\ 0 & 8 & 4 \\ 3 & 1 & -1 \end{bmatrix}$

Proposition

1) If A, B two matrices from the same size then :- 11) $(A^T)^T = A$, 12) $(A+B)^T = A^T + B^T$ 2) If A (mxn), B(nxp) then $(AB)^{T} = B^{T}A^{T}$.

Example:-

Verify the proposition above for the matrices $A = \begin{bmatrix} 2 & 3 \\ -4 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 9 & 6 \\ 0 & 7 \end{bmatrix}$.

Definition:-

1)The square matrix A is called symmetric matrix if $A^{T} = A$, in other words $a_{ij} = a_{ji}$, $\forall i \neq j$. 2)The square matrix A is called skew-symmetric matrix if $A^{T} = -A$, in other words $a_{ij} = -a_{ji}$, $\forall i \neq j$ and the elements of main diagonal = 0. Examples:-

 $A = \begin{bmatrix} 1 & 3 & -5 \\ 3 & 5 & 6 \\ -5 & 6 & 7 \end{bmatrix}$ is a symmetric matrix . 1 $F = \begin{bmatrix} 0 & -7 & 12 \\ 7 & 0 & -65 \\ -12 & 65 & 0 \end{bmatrix}$ is a skew-symmetric matrix .

Definition:- A square matrix A from size n is called (orthogonal matrix) if $AA^T = A^TA = I_n$.

Question :- Prove that A =
$$\begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$
 is an orthogonal matrix ?

Definition:-Let A is a square matrix of size n , then the matrix B is called the invers matrix of A if and only if $AB = BA = I_n$ denoted by A^{-1} . Notes

- - Not for every square matrix an inverse . • •
 - If A is an orthogonal matrix, then $A^{T} = A^{-1}$.

• If A is a diagonal matrix such that
$$D = \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{bmatrix}$$
, then

$$A^{-1} = \begin{bmatrix} \frac{1}{a} & 0 & 0 & 0 \\ 0 & \frac{1}{b} & 0 & 0 \\ 0 & 0 & \frac{1}{c} & 0 \\ 0 & 0 & 0 & \frac{1}{d} \end{bmatrix} .$$
Question :- If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \sqrt{3}/2 \\ 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$ orthogonal matrix , find A^{-1} ?

Proposition

ı.

Т

If A, B are two square matrices of size n and they have inverse for them ,then (AB)-1 = B-1A-1.

Proof :- (AB).(B⁻¹A⁻¹) = A(BB⁻1)A⁻¹ = AA⁻¹ = I_n(1) (B⁻¹A⁻¹).(AB) = B⁻¹(A⁻¹A)B = B⁻¹B = I_n(2) \therefore (AB)⁻¹ = B⁻¹A⁻¹. Question :- Prove that (A^T)⁻¹ = (A⁻¹)^T, if A is a square matrix and has an inverse ? <u>Definition:-</u>For any square matrix A from size n there exist 0nly one number called the determinant of the matrix denoted by |A|. Examples:-

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
 is a determinant from size 2 and its value = $a_{11} \cdot a_{22} - a_{21} a_{12}$.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 is a determinant from size 3 and its value calculate as in the below :-

 $[a_{11}.a_{22}.a_{33}+a_{12}.a_{23}.a_{31}+a_{13}.a_{21}.a_{32}] - [a_{13}.a_{22}.a_{31}+a_{11}.a_{23}.a_{32}+a_{12}.a_{21}.a_{33}].$

Definition :- The minor of |A| is a determinant from |A| after subtracting equal number from rows and columns of |A|.

The minor of
$$a_{11} = |M_{11}| = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$
 and the minor of $a_{32} = |M_{32}| = \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}$

Definition :- The cofactor of the element $a_{ij} = (-1)^{i+j} \cdot \left| M_{ij} \right|$ denoted by A_{IJ} .

Proposition

The value of any determinant equal to sum of multiplication elements of any rows(columns) by its cofactors .

Such that
$$|A| = a_{i1}A_{i1} + a_{i2}A_{i2} + a_{i3}A_{i3} + \dots + a_{in}A_{in}$$
, $I = 1, 2, 3, \dots, n$ OR
 $= a_{1j}A_{1j} + a_{2j}A_{2j} + a_{3j}A_{3j} + \dots + a_{nj}A_{nj}$, $j = 1, 2, 3, \dots, n$.
Example :- Find the value of $\begin{vmatrix} 1 & 4 & 9 & 2 \\ 2 & 0 & 3 & 0 \\ 5 & 0 & 0 & 7 \\ -3 & 0 & 9 & -2 \end{vmatrix}$

Proposition

If A is a square matrix	a	nd $ A $	≠0, ther	ו A⁻¹	$=\frac{1}{ A }$	[_ 1 .[_	A _{ij} [
1		1	1	1	4	9	2
	2 1	-1 2	-1	2	0	3	0
Example:- Find A ⁻ of	1		1 , 1	5	0	0	7
			1	-3	0	9	-2

Solving the system of linear equations by matrices

If we have the system of linear equations as below: $a_{11}x_1+a_{12}x_2+a_{13}x_3+...+a_{1n}x_n = b_1$ $a_{21}x_1+a_{22}x_2+a_{23}x_3+...+a_{2n}x_n = b_2$ $a_{31}x_1+a_{32}x_2+a_{33}x_3+...+a_{3n}x_n = b_3$

 $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$

Then A =
$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ a_{31} & a_{32} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}, B = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{bmatrix}$$

г ¬

Г**-** Л

:. The solution to the system above is $X = A^{-1}.B$ <u>Example :-</u> Solve the system of linear equations:- 2x+y=z z-y+x=6x+2y+z-3=0

The solution

First :- we must arrange the equations as :- 2x+y-z=0

x-y+z=6 x+2y+z=3

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & 2 & 1 \end{bmatrix} , X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} , B = \begin{bmatrix} 0 \\ 6 \\ 3 \end{bmatrix}$$
$$|A| = \begin{vmatrix} 2 & 1 & -1 & 2 & 1 \\ 1 & -1 & 1 & 1 & -1 & = -9 \neq 0 \\ 1 & 2 & 1 & 1 & 2 \end{bmatrix}$$
$$A_{11} = \begin{vmatrix} -1 & 1 \\ 2 & 1 & = -3 \\ 1 & 2 & 1 & 1 & 2 \end{vmatrix} = -3 , A_{12} = -1 \begin{vmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{vmatrix} = 0 , A_{13} = \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} = 3$$
$$A_{21} = -1 \begin{vmatrix} 1 & -1 \\ 2 & 1 \\ 1 & 2 \end{vmatrix} = -3 , A_{22} = \begin{vmatrix} 2 & -1 \\ 1 & 1 \\ 1 & 1 \end{vmatrix} = 3 , A_{23} = -1 \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = -3$$
$$A_{31} = \begin{vmatrix} 1 & -1 \\ -1 & 1 \\ 1 & 1 \end{vmatrix} = 0 , A_{32} = -1 \begin{vmatrix} 2 & -1 \\ 1 & 1 \\ 1 & 1 \end{vmatrix} = -3 , A_{33} = \begin{vmatrix} 2 & 1 \\ 1 & -1 \\ 2 & 1 \end{vmatrix} = -3$$
$$(A_{31} = \begin{vmatrix} -3 & 0 & 3 \\ -3 & 3 & -3 \\ 0 & -3 & -3 \\ 0 & -3 & -3 \end{vmatrix} , [A_{10}]^{T} = \begin{bmatrix} -3 & -3 & 0 \\ 0 & 3 & -3 \\ 3 & -3 & -3 \\ \end{bmatrix} ,$$
$$\therefore A^{-1} = \frac{1}{-9} \begin{bmatrix} -3 & -3 & 0 \\ 0 & 3 & -3 \\ 2 & -2 & -2 \\ \end{bmatrix}$$

$$\therefore \mathbf{A}^{-1} = \frac{-9}{-9} \begin{bmatrix} 0 & 3 & -3 \\ 3 & -3 & -3 \end{bmatrix}$$
$$\therefore \mathbf{X} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$

Questions

1) If
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 4 & 5 \\ 6 & 7 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 9 & 0 & 12 \\ 5 & 6 & 1 \\ -1 & 0 & 0 \end{bmatrix}$, Find (1) $2A - 3B$, (2) $I_3 + 4B - 3B$

(3) AB , BA , what do you notice ?

2) Write the matrix A from size 3x4 such that A =
$$\begin{cases} 7 & , \forall i < j \\ 3 & , \forall i = j \\ j-i & , \forall i > j \end{cases}$$

3) Find the value of x, y, z, t if
$$\begin{bmatrix} 3x & 1 \\ z & 3+2t \end{bmatrix} - 2\begin{bmatrix} x & -y \\ 3z & -2t \end{bmatrix} = 3\begin{bmatrix} -1 & x-y \\ x+y & 2z \end{bmatrix}$$

4) If A =
$$\begin{bmatrix} 2 & 4 & 1 \\ -1 & 3 & -2 \\ 2 & -3 & 5 \end{bmatrix}$$
, B =
$$\begin{bmatrix} -11 \\ -16 \\ 21 \end{bmatrix}$$
, find the matrix X which satisfy AX = B.

5) If A = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$ is orthogonal matrix , find A⁻¹. 6) Write a symmetric matrix from size 4. 7) Write a skew-symmetric matrix from size 5. 8) Is there exist an inverse matrix for $A = \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}$? 9) Solve the following system of linear equations:- $2x_1 - 4x_2 - x_3 = 2$ $3x_2 - 2x_3 + x_1 = 0$ (1) $-6 + 3x_1 = 2x_2 + 3x_3$ $10x_3 + 6x_2 = 9 - 3x_1$ $x_1 + x_2 = 4 - x_3$ (2) $3x_2 + 2x_1 + 4x_3 = 0$ 10) Find the value of $\begin{vmatrix} 1 & 3 & -6 & -1 \\ 2 & 8 & 5 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & -2 \end{vmatrix}$ 11) If $A = \begin{bmatrix} 2 & -2 & 1 \\ 0 & 4 & 0 \\ 11 & 8 & -5 \end{bmatrix}$, $B = \begin{bmatrix} 8 & 7 \\ 9 & 2 \\ 10 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 90 \\ 2 & 4 \\ -4 & 12 \end{bmatrix}$, Is $A \cdot (B + C) = A \cdot B + A \cdot C$? 12) Full the following statements with suitable words :a) Tow matrices are equal if and only if b) Lower triangular matrix is c) Upper triangular matrix is d) Diagonal matrix is e) We can multiply the matrix A by the matrix B if f) A is a symmetric matrix if and only if g) IF the matrix $A = -A^{T}$ then A is called..... h) If $AB = BA = I_n$ then B is called t) The minor to a_{ii}of the determinant A is k) The cofactor of the element aijdenoted by and equal to 13) For the matrices A = $\begin{bmatrix} 2 & -2 & 1 \\ 0 & 4 & 0 \\ 11 & 8 & -5 \end{bmatrix}$, B = $\begin{bmatrix} 2 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$, C = $\begin{bmatrix} 1 & 0 & 2 \\ 3 & 5 & -4 \\ -5 & 6 & 7 \end{bmatrix}$ Verify the following :-1- A + B = B + A2- A + (B + C) = (A + B) + C3- A + O = O + A = A 4 - C - C = O5- $(B^{T})^{T} = B$ 6- $AI_3 = I_3A = A$ 7- A(BC) = (AB)C8- $(B + C)^{T} = B^{T} + C^{T}$ Functions and differentiation

8