

Lecture No. 6

Southern Technical University Programming in C ++ course code CST100

Technical Institute / Qurna 0 lecturer: Israa Mahmood Hayder

Assignment statement

Operators

Once introduced to variables and constants, we can begin to operate with them

by using operators. What follows is a complete list of operators. At this point, it is

likely not necessary to know all of them, but they are all listed here to also serve

as reference.

Assignment operator (=)

The assignment operator assigns a value to a variable.

 x = 5;

This statement assigns the integer value 5 to the variable x. The assignment

operation always takes place from right to left, and never the other way around:

 x = y;

This statement assigns to variable x the value contained in variable y. The value

Lecture No. 6

Southern Technical University Programming in C ++ course code CST100

Technical Institute / Qurna 0 lecturer: Israa Mahmood Hayder

of x at the moment this statement is executed is lost and replaced by the value

of y.

Consider also that we are only assigning the value of y to x at the moment of the

assignment operation. Therefore, if y changes at a later moment, it will not affect

the new value taken by x.

For example, let's have a look at the following code - I have included the evolution

of the content stored in the variables as comments:

s // assignment operator

#include <iostream>

using namespace std;

int main ()

{

 int a, b; // a:?, b:?

 a = 10; // a:10, b:?

 b = 4; // a:10, b:4

 a = b; // a:4, b:4

 b = 7; // a:4, b:7

 cout << "a:";

 cout << a;

 cout << " b:";

 cout << b;

}

a:4 b:7 Edit

&

Run

This program prints on screen the final values of a and b (4 and 7, respectively). Notice

how a was not affected by the final modification of b, even though we declared a = b earlier.

http://www.cplusplus.com/doc/tutorial/operators/
http://www.cplusplus.com/doc/tutorial/operators/
http://www.cplusplus.com/doc/tutorial/operators/

Lecture No. 6

Southern Technical University Programming in C ++ course code CST100

Technical Institute / Qurna 0 lecturer: Israa Mahmood Hayder

Assignment operations are expressions that can be evaluated. That means that the assignment

itself has a value, and -for fundamental types- this value is the one assigned in the operation.

For example:

 y = 2 + (x = 5);

In this expression, y is assigned the result of adding 2 and the value of another assignment expression

(which has itself a value of 5). It is roughly equivalent to:

1

2

x = 5;

y = 2 + x;

With the final result of assigning 7 to y.

The following expression is also valid in C++:

 x = y = z = 5;

It assigns 5 to the all three variables: x, y and z; always from right-to-left.

Arithmetic operators (+, -, *, /, %)

The five arithmetical operations supported by C++ are:

operator description

+ addition

- subtraction

* multiplication

/ division

Lecture No. 6

Southern Technical University Programming in C ++ course code CST100

Technical Institute / Qurna 0 lecturer: Israa Mahmood Hayder

% modulo

Operations of addition, subtraction, multiplication and division correspond literally to their respective

mathematical operators. The last one, modulo operator, represented by a percentage sign (%), gives the

remainder of a division of two values. For example:

 x = 11 % 3;

results in variable x containing the value 2, since dividing 11 by 3 results in 3, with a remainder of 2.

Compound assignment (+=, -=, *=, /=, %=, >>=, <<=, &=, ^=, |=)

Compound assignment operators modify the current value of a variable by performing an operation on

it. They are equivalent to assigning the result of an operation to the first operand:

expression equivalent to...

y += x; y = y + x;

x -= 5; x = x - 5;

x /= y; x = x / y;

price *= units + 1; price = price * (units+1);

and the same for all other compound assignment operators. For example:

// compound assignment operators

#include <iostream>

using namespace std;

int main ()

{

 int a, b=3;

5

Lecture No. 6

Southern Technical University Programming in C ++ course code CST100

Technical Institute / Qurna 0 lecturer: Israa Mahmood Hayder

 a = b;

 a+=2; // equivalent to a=a+2

 cout << a;

}

Counters

Increment and decrement (++, --)

Some expression can be shortened even more: the increase operator (++) and the decrease operator (--)

increase or reduce by one the value stored in a variable. They are equivalent to +=1 and to -=1,

respectively. Thus:

++x;

x+=1;

x=x+1;

are all equivalent in its functionality; the three of them increase by one the value of x.

In the early C compilers, the three previous expressions may have produced different executable code

depending on which one was used. Nowadays, this type of code optimization is generally performed

automatically by the compiler, thus the three expressions should produce exactly the same executable

code.

A peculiarity of this operator is that it can be used both as a prefix and as a suffix. That means that it can

be written either before the variable name (++x) or after it (x++). Although in simple expressions

like x++ or ++x, both have exactly the same meaning; in other expressions in which the result of the

increment or decrement operation is evaluated, they may have an important difference in their

meaning: In the case that the increase operator is used as a prefix (++x) of the value, the expression

evaluates to the final value of x, once it is already increased. On the other hand, in case that it is used as

Lecture No. 6

Southern Technical University Programming in C ++ course code CST100

Technical Institute / Qurna 0 lecturer: Israa Mahmood Hayder

a suffix (x++), the value is also increased, but the expression evaluates to the value that x had before

being increased. Notice the difference:

Example 1 Example 2

x = 3;

y = ++x;

// x contains 4, y contains 4

x = 3;

y = x++;

// x contains 4, y contains 3

In Example 1, the value assigned to y is the value of x after being increased. While in Example 2, it is the

value x had before being increased.

