Chapter Four

Operational Amplifiers (OP-Amp

Chapter Outline: -

4.1 Ideal Op Amp

4.2 Inverting Amplifier
4.3 Non-inverting Amplifier
4.4 Summing OP-AMP
4.5 Non-inverting Adder
4.6 The Subtractor
4.7 The differentiator
4.8 The integrator
4.9 The differential OP-amp
4.10 Op-amp voltage follower
4.11 Op-amp Signal Generator
4.12 Op-amp Zero Crossing Detector
4.13 The Comparator
4.14 Exercises and Problems

4.1 Ideal Op Amp

Golden Rules of Op Amps:

1. The output attempts to do whatever is necessary to make the voltage difference between the inputs zero.
2. The inputs draw no current.

4.2 Inverting Amplifier

Current into op amp is zero

$$
\begin{aligned}
& v_{-}=v_{+}=0 \\
& i_{i}=\frac{v_{i}-0}{R_{1}}=\frac{v_{i}}{R_{1}} \\
& i_{i}=\frac{0-v_{0}}{R_{2}}=\frac{-v_{0}}{R_{2}} \\
& \frac{v_{i}}{R_{1}}=\frac{-v_{0}}{R_{2}} \\
& A_{F}=\frac{v_{o}}{v_{i}}=-\frac{R_{2}}{R_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& -v_{\text {out }} \\
& -v_{\text {in }}
\end{aligned}
$$

4.3 Non-inverting Amplifier

Current into op amp is zero

$$
\begin{gathered}
\boldsymbol{v}_{+}=\boldsymbol{v}_{-}=\boldsymbol{v}_{\boldsymbol{i}} \\
v_{i}=v_{+}=v_{-}=\frac{R_{1}}{R_{1}+R_{2}} v_{o} \\
A_{F}=\frac{v_{o}}{v_{i}} \\
A_{F}=\frac{v_{o}}{v_{i}}=1+\frac{R_{2}}{R_{1}}
\end{gathered}
$$

EX. For the inverting Op-Amp in bellow. Find the gain voltage if vi=5v, R1=2 Ω and $R 2=10 \Omega$
$A_{F}=\frac{v_{o}}{v_{i}}=-\frac{R_{2}}{R_{1}}$

$$
A_{F}=\frac{10}{2}=5
$$

4.4 Summing OP-AMP

It is one of the inverting op-amp applications where the inverting input is connected to several voltage sources $\left[V_{1}, V_{2}, \ldots V_{n}\right] ; \mathrm{n}=$ number of inputs, as shown in the Figure above.

$$
\begin{align*}
& I=-I_{F}=I_{1}+I_{2}+\cdots+I_{n} \tag{1}\\
& I_{F}=\frac{V_{O}}{R_{F}} \tag{2}\\
& I_{1}=\frac{V_{1}}{R_{1}} \tag{3}\\
& I_{2}=\frac{V_{2}}{R_{2}} \tag{4}\\
& I_{n}=\frac{V_{n}}{R_{n}} \tag{5}
\end{align*}
$$

Sub. In equation (1) yields:-
$I=\frac{V_{O}}{R_{F}}=-\left[\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\cdots+\frac{V_{n}}{R_{n}}\right]$
So, the output voltage
$V_{O}=-\left[\frac{R_{1}}{R_{F}} V_{1}+\frac{R_{2}}{R_{F}} V_{2}+\cdots+\frac{R_{n}}{R_{F}} V_{n}\right]$
EX: Design op-amp summing circuit to solve the following equaions:-

1) $V_{O}=0.2 V_{1}+V_{2}-0.2 V_{3}$
2) $V_{O}=2 V_{1}-0.5 V_{2}-0.4 V_{3}$ (homework)
3) $V_{O}=2.5 V_{1}-0.2 V_{2}$ (homework)

Consider the feedback resistance is equal to $10 \mathrm{~K} \Omega$
SOL.

$$
\begin{aligned}
& \text { بما انة دائرة الجامع هي من تطبيقات المكبر القالب , يجب اعتبار قطبية الفولتيات عكس الإشارة الجبرية } \\
& \text { بالمعادلة عند رسم الدائرة . } \\
& \text { المعادلة الأولى تحتوي على ثلاثة حدود (n=3) }
\end{aligned}
$$

$R_{F}=10 K \Omega$ by using eq (7) we get:-
$V_{O}=-\left[\frac{R_{1}}{R_{F}} V_{1}+\frac{R_{2}}{R_{F}} V_{2}+\cdots+\frac{R_{n}}{R_{F}} V_{n}\right]$

