Where,
I_{m} : peak value of load current
V_{m} : peak value of phase voltage
$I_{d c}$: Avarage value of load current
$V_{d c}$: Avarage value of phase voltage
1.3.2: Three phase Bridge rectifier

Fig. (1-3) Power circuit diagram of three phase bridge rectifier

$$
\begin{gather*}
I_{d c}=\frac{1}{\pi / 3} \int_{\pi / 3}^{2 \pi / 3} \sin (w t) d(w t) \tag{1}\\
I_{d c}=\frac{3}{\pi}\left[-I_{m} \cos (w t)\right]_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} \tag{2}\\
I_{d c}=\frac{3}{\pi}\left[-I_{m} \cos (2 \pi / 3)+I_{m} \cos (\pi / 3)\right] \tag{3}\\
I_{d c}=\frac{3 I_{m}}{\pi}\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)\right]
\end{gather*}
$$

$$
\begin{align*}
& I_{d c}=\frac{3 I_{m}}{\pi} \tag{4}\\
& V_{d c}=I_{d c} R_{L} \tag{5}\\
& I_{m}=\frac{V_{m}}{R_{L}} \tag{6}\\
& P_{d c}=I^{2}{ }_{d c} R_{L}=\frac{V^{2}{ }_{d c}}{R_{L}} \tag{7}
\end{align*}
$$

1.3.3: The conduction time TC

1-3-phase half-wave rectifier circuit
$F_{o}=\frac{1}{T_{c}} \quad F_{o}=$ output frequency,$T_{c}=$ conduction time
$\emptyset_{\mathrm{c}}=$ the conduction angle $=\omega T_{c}$ therefore,
$T_{c}=\emptyset_{c} / \omega$
$\emptyset_{c}=\left[\frac{5 \pi}{6}\right]-\left[\frac{\pi}{6}\right]=\frac{2 \pi}{3}$
$T_{C}=\frac{2 \pi}{3} / 2 \pi f_{i}=1 / 3 f_{i}$
$F_{o}=\frac{1}{T_{c}}=3 f_{i}$
2- 3-phase bridge rectifier
$F_{o}=\frac{1}{T_{c}} \quad F_{o}=$ output frequency,$T_{c}=$ conduction time
$\emptyset_{\mathrm{c}}=$ the conduction angle $=\omega T_{c}$ therefore,
$T_{c}=\emptyset_{c} / \omega$
$\emptyset_{c}=\left[\frac{2 \pi}{3}\right]-\left[\frac{\pi}{3}\right]=\frac{\pi}{3}$
$T_{c}=\frac{\pi}{3} / 2 \pi f_{i}=1 / 6 f_{i}$
$F_{o}=\frac{1}{T_{c}}=6 f_{i}$

1.3.3: Summary

يوجد في هذا الفصل نو عين من دوائر النقويم three-phase half wave rectifier أولا: الدائرة الأولى وتسمى تحتوي هذه الائرة على ثلاثة دايودات لذلك فأن العلاقة بين تردد الادخال وتردد الإخراج تكون

$$
\begin{align*}
& F_{o}=3 \times f_{i} \tag{1}\\
& \boldsymbol{I}_{\boldsymbol{d} c}=\frac{3 \sqrt{3} I_{m}}{2 \pi} \tag{2}\\
& v_{d c}=\frac{3 \sqrt{3} v_{m}}{2 \pi} \tag{3}\\
& V_{d c}=I_{d c} \boldsymbol{R}_{\boldsymbol{L}} \tag{4}\\
& \boldsymbol{I}_{\boldsymbol{m}}=\frac{V_{m}}{R_{L}} \tag{5}\\
& \boldsymbol{P}_{d c}=I^{2}{ }_{d c} \times R_{L} \tag{7}\\
& R_{L}=\frac{V_{d c}^{2}}{R_{L}} \tag{8}
\end{align*}
$$

line , rms الفولتية التتي تعطى بالسؤال هي فولتية خط الأسئلة المحتملة:

1) عندما بطلب
 max طور و

$$
V_{\text {max }{ }_{\text {phase }}}=V_{\text {rms } \text { Line }} \times \frac{\sqrt{2}}{\sqrt{3}}
$$

$$
v_{d c}=\frac{3 \sqrt{3} v_{m}}{2 \pi}
$$

2) عندما بعطي بالسؤال

$$
\begin{gathered}
v_{d c}=\frac{3 \sqrt{3} v_{m}}{2 \pi} \\
V_{\text {rms }{ }_{\text {Line }}}=V_{\text {max }_{\text {phase }}} \times \frac{\sqrt{3}}{\sqrt{2}}
\end{gathered}
$$

Bridge rectifier ثانيا: الدائرة الثانية وتسمى
تحتوي هذه الدائرة على ستة دايودات لذللك فأن العلاقة بين تردد الادخال وتردد الإخر اج تكون

$$
\begin{align*}
& F_{o}=6 \times f_{i} \tag{1}\\
& I_{d c}=\frac{3 I_{m}}{\pi} \tag{2}\\
& v_{d c}=\frac{3 v_{m}}{\pi} \tag{3}\\
& V_{d c}=I_{d c} \boldsymbol{R}_{L} \tag{4}\\
& I_{m}=\frac{V_{m}}{R_{L}} \tag{5}\\
& P_{d c}=I^{2}{ }_{d c} \tag{7}\\
& R_{L}=\frac{V^{2}{ }_{d c}}{R_{L}} \tag{8}
\end{align*}
$$

line , rms الفولتية التتي تعطى بالسؤال هي فولتية خط الأسئلة الدحتدلة:

1) عندما بطلب
 max طور و

$$
V_{\text {max } L_{\text {Line }}}=V_{r m s_{, L i n e}} \times \sqrt{2}
$$

$$
v_{d c}=\frac{3 v_{m}}{\pi}
$$

2) عندما بعطي بالسؤال

> بالاتجاه العكسي

نستخرج

$$
\begin{gathered}
v_{d c}=\frac{3 v_{m}}{\pi} \\
V_{r m s, \text { Line }}=V_{\text {max,Line }} \times 1 / \sqrt{2}
\end{gathered}
$$

1.3.4: Exercises and problems

Q1] For three-phase half wave rectifier prove that

$$
I_{d c}=\frac{3 \sqrt{3} I_{m}}{2 \pi}
$$

Q2] For three-phase Bridge rectifier prove that

$$
I_{d c}=\frac{3 I_{m}}{\pi}
$$

