Series and parallel resistance

2.4 PARALLEL CIRCUITS

The network of Fig. 6.21 is the simplest of parallel circuits. All the elements have terminals a and b in common. The total resistance is determined by $R T=$ $R 1 R 2 /(R 1+R 2)$, and the source current by $I s=E / R T$. Throughout the text, the subscript s will be used to denote a property of the source. Since the terminals of the battery are connected directly across the resistors $R 1$ and $R 2$, the following should be obvious:

The voltage across parallel elements is the same. Using this fact will result in

$$
V_{1}=V_{2}=E
$$

and

$$
I_{1}=\frac{V_{1}}{R_{1}}=\frac{E}{R_{1}}
$$

with

$$
I_{2}=\frac{V_{2}}{R_{2}}=\frac{E}{R_{2}}
$$

If we take the equation for the total resistance and multiply both sides by the applied voltage, we obtain
and

$$
E\left(\frac{1}{R_{T}}\right)=E\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)
$$

$$
\frac{E}{R_{T}}=\frac{E}{R_{1}}+\frac{E}{R_{2}}
$$

Series and parallel resistance

Substituting the Ohm's law relationships appearing above, we find that the source current

$$
I_{s}=I_{1}+I_{2}
$$

permitting the following conclusion:
For single-source parallel networks, the source current $\left(I_{s}\right)$ is equal to the sum of the individual branch currents.

The power dissipated by the resistors and delivered by the source can be determined from

$$
\begin{aligned}
& P_{1}=V_{1} I_{1}=I_{1}^{2} R_{1}=\frac{V_{1}^{2}}{R_{1}} \\
& P_{2}=V_{2} I_{2}=I_{2}^{2} R_{2}=\frac{V_{2}^{2}}{R_{2}} \\
& P_{s}=E I_{s}=I_{s}^{2} R_{T}=\frac{E^{2}}{R_{T}}
\end{aligned}
$$

Example:
a. Calculate R_{T}.
b. Determine I_{s}.
c. Calculate I_{1} and I_{2}, and demonstrate that $I_{s}=I_{1}+I_{2}$.
d. Determine the power to each resistive load.
e. Determine the power delivered by the source, and compare it to the total power dissipated by the resistive elements.

Solutions:

a. $R_{T}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{(9 \Omega)(18 \Omega)}{9 \Omega+18 \Omega}=\frac{162 \Omega}{27}=6 \Omega$
b. $I_{s}=\frac{E}{R_{T}}=\frac{27 \mathrm{~V}}{6 \Omega}=4.5 \mathrm{~A}$

Series and parallel resistance

c. $\quad I_{1}=\frac{V_{1}}{R_{1}}=\frac{E}{R_{1}}=\frac{27 \mathrm{~V}}{9 \Omega}=3 \mathrm{~A}$

$$
I_{2}=\frac{V_{2}}{R_{2}}=\frac{E}{R_{2}}=\frac{27 \mathrm{~V}}{18 \Omega}=1.5 \mathrm{~A}
$$

$$
I_{s}=I_{1}+I_{2}
$$

$4.5 \mathrm{~A}=3 \mathrm{~A}+1.5 \mathrm{~A}$
$4.5 \mathrm{~A}=4.5 \mathrm{~A} \quad$ (checks)
d. $P_{1}=V_{1} I_{1}=E I_{1}=(27 \mathrm{~V})(3 \mathrm{~A})=81 \mathrm{~W}$
$P_{2}=V_{2} I_{2}=E I_{2}=(27 \mathrm{~V})(1.5 \mathrm{~A})=40.5 \mathrm{~W}$
e. $P_{s}=E I_{s}=(27 \mathrm{~V})(4.5 \mathrm{~A})=121.5 \mathrm{~W}$
$=P_{1}+P_{2}=81 \mathrm{~W}+40.5 \mathrm{~W}=121.5 \mathrm{~W}$

2.5 Series-Parallel Networks

series-parallel networks are networks that contain both series and parallel circuit configurations.

EXAMPLE 2.6 Find the indicated currents and voltages for the network of Fig below ??

Solution:

Series and parallel resistance

$$
\begin{aligned}
R_{1 \| 2} & =\frac{R}{N}=\frac{6 \Omega}{2}=3 \Omega \\
R_{A} & =R_{1\|2\| 3}=\frac{(3 \Omega)(2 \Omega)}{3 \Omega+2 \Omega}=\frac{6 \Omega}{5}=1.2 \Omega \\
R_{B} & =R_{4 \| 5}=\frac{(8 \Omega)(12 \Omega)}{8 \Omega+12 \Omega}=\frac{96 \Omega}{20}=4.8 \Omega
\end{aligned}
$$

$$
\begin{aligned}
R_{T} & =R_{1 \mid 2 \| 3}+R_{4| | 5}=1.2 \Omega+4.8 \Omega=6 \Omega \\
I_{s} & =\frac{E}{R_{T}}=\frac{24 \mathrm{~V}}{6 \Omega}=4 \mathrm{~A}
\end{aligned}
$$

with

$$
\begin{aligned}
& V_{1}=I_{s} R_{1\|2\| 3}=(4 \mathrm{~A})(1.2 \Omega)=4.8 \mathrm{~V} \\
& V_{5}=I_{s} R_{4 \| 5}=(4 \mathrm{~A})(4.8 \Omega)=19.2 \mathrm{~V}
\end{aligned}
$$

Applying Ohm's law,

$$
\begin{aligned}
& I_{4}=\frac{V_{5}}{R_{4}}=\frac{19.2 \mathrm{~V}}{8 \Omega}=2.4 \mathrm{~A} \\
& I_{2}=\frac{V_{2}}{R_{2}}=\frac{V_{1}}{R_{2}}=\frac{4.8 \mathrm{~V}}{6 \Omega}=0.8 \mathrm{~A}
\end{aligned}
$$

2.6 Y-D (T-p) AND D-Y (p-T) CONVERSIONS

Circuit configurations are often encountered in which the resistors do not appear to be in series or parallel.

The $Y(T)$ and $\mathrm{D}(\mathrm{p})$ configurations.

Series and parallel resistance

Under these conditions, it may be necessary to convert the circuit from one form to another to solve for any unknown quantities if mesh or nodal analysis is not applied. versa. Two circuit configurations that often account for these difficulties are the wye and delta configurations. They are also referred to as the tee (\mathbf{T}) and $\mathbf{p i}(\pi)$, respectively,. Note that the pi is actually an inverted delta. The purpose of this section is to develop the equations for converting from D to Y , or vice

Introducing the concept of $\mathrm{D}-Y$ or Y - D conversions.

1. To obtain the relationships necessary to convert from a \mathbf{D} to a Y

resulting in the following expression for R_{3} in terms of R_{A}, R_{B}, and R_{C} :

$$
\begin{equation*}
R_{3}=\frac{R_{A} R_{B}}{R_{A}+R_{B}+R_{C}} \tag{2.14}
\end{equation*}
$$

Following the same procedure for R_{1} and R_{2}, we have

$$
\begin{equation*}
R_{1}=\frac{R_{B} R_{C}}{R_{A}+R_{B}+R_{C}} \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{2}=\frac{R_{A} R_{C}}{R_{A}+R_{B}+R_{C}} \tag{2.16}
\end{equation*}
$$

2. To obtain the relationships necessary to convert from a Y to a D

Series and parallel resistance

and

$$
\begin{equation*}
R_{C}=\frac{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}{R_{3}} \tag{2.17}
\end{equation*}
$$

We follow the same procedure for R_{B} and R_{A} :

$$
\begin{equation*}
R_{A}=\frac{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}{R_{1}} \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{B}=\frac{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}{R_{2}} \tag{2.19}
\end{equation*}
$$

3. If $\mathbf{R 1}=\mathbf{R} \mathbf{2}=\mathbf{R} \mathbf{3}$ or $\mathbf{R A}=\mathbf{R B}=\mathbf{R C}$

$$
R_{\mathrm{Y}}=\frac{R_{\Delta}}{3}
$$

or

$$
R_{\Delta}=3 R_{\mathrm{Y}}
$$

EXAMPLE 2.7 Convert the D of Fig. below to a Y ??

Series and parallel resistance

Solution:

$$
\begin{aligned}
& R_{1}=\frac{R_{B} R_{C}}{R_{A}+R_{B}+R_{C}}=\frac{(20 \Omega)(10 \Omega)}{30 \Omega+20 \Omega+10 \Omega}=\frac{200 \Omega}{60}=3^{\frac{1}{3} \Omega} \\
& R_{2}=\frac{R_{A} R_{C}}{R_{A}+R_{B}+R_{C}}=\frac{(30 \Omega)(10 \Omega)}{60 \Omega}=\frac{300 \Omega}{60}=\mathbf{5} \boldsymbol{\Omega} \\
& R_{3}=\frac{R_{A} R_{B}}{R_{A}+R_{B}+R_{C}}=\frac{(20 \Omega)(30 \Omega)}{60 \Omega}=\frac{600 \Omega}{60}=\mathbf{1 0} \boldsymbol{\Omega}
\end{aligned}
$$

EXAMPLE 2.8 Find the total resistor of figure below ??

Series and parallel resistance

Solution:

$$
\left.\begin{array}{rl}
R_{1} & =\frac{R_{B} R_{C}}{R_{A}+R_{B}+R_{C}}=\frac{(3 \Omega)(6 \Omega)}{3 \Omega+3 \Omega+6 \Omega}=\frac{18 \Omega}{12}=1.5 \Omega \longleftarrow \\
R_{2}=\frac{R_{A} R_{C}}{R_{A}+R_{B}+R_{C}}=\frac{(3 \Omega)(6 \Omega)}{12 \Omega}=\frac{18 \Omega}{12}=1.5 \Omega \longleftarrow \\
\text { the eqequare, two resistors of the } Y \text { will }
\end{array}\right\}
$$

