Southern Technical University
Technical Institute / Qurna
Dep. of Computer Systems Techniques
Second class
Subject : Data Structures
Lecturer : Israa Mahmood Hayder
Lecture no.8,9

il gom gall Julgall

(Linked Structures)

il - palil) £ ga) -

Ay yial) adf gl el - el
dday) yial) daildll Ciy 25 @
Lebiiai (3 sk g ddayl yial) adl glll £ 651 @
b pais pda Al Aol paliall 3¢ 8 / Adasad) Al o
4018l (3)&3.: ¢ddaa éJ‘ 4;\.“3..:)

B// Rationale (33a) &)) e) ;-

- Allinked list is a data structure that makes it easy to rearrange data without having to
move data in memory. The student will learn about Types of Storage allocation and
types of linked lists

- Cll Central (43Sl 3 Sil):-

- Types of Storage allocation

- Comparison between Sequential and Dynamic Storage allocation
- Pointers

- Operations on single Linked List

D//_Objectives (33a ¢l ilaai):-
After studying this unit, the student will be able to:-

- Realize the difference between Sequential and Dynamic Storage allocation
- Define pointers and use them in linked lists
- Write Operations on single Linked List

A/l Storage allocation

There are two types of storage allocation depending on the structure of the data:

1- Sequential Allocation Storage
Is the simples way to store lists in memory sequentially, and from the Base address which

is the first location of the list, we can know the location of any item in the list.

Advantages

1- Simple in representation
2- Take less memory space
3- Efficient in random access

Disadvantages

1- Hard to apply addition and deletion
2- Number of elements must be predefined

2- Dynamic Allocation Storage
The second way to store lists is to use link (or pointer), each element contain the location of

the next element, so elements may not stored sequentially in memory.

Each element (node) consist of 2 parts:
1) Data
2)pointer (link) to the next address

Advantages
1- insertion and deletion is easy to implement (not need shifting)

2- Easy to merge and split by only change the pointers

Disadvantages
1- Take more memory space
2- To access any element randomly, we must start from the beginning of the list

B//Comparison between Sequential and dynamic Storage
allocation:

1- Ammont of storage

The dynamic storage need more memory space because of the need to use pointer to next
element.

2-Insertion and deletion operations
These operations simplest to execute in dynamical storage because they don’t need shifting.

3-Random access

The sequential way is easier in accessing randomly, but the dynamic way require to start
searching from the beginning of the list.

4-Merge and sort

In the dynamic storage these operations are simple to execute by only change the pointer in
merging location while the sequential storage need shifting and reorganization.

Quizl:

What are the advantages of each Dynamic and Sequential storage allocation?

C- Types of lists :-

1- Non-Linked List :- do not use pointers it's structure, it use the vectors and array for
representing it's structure.

2- Linked Lists :- a list has been defined to contain an ordered list of elements, each
element (node) contains a link or pointer to the next node.

Linked lists :- A list that use pointers or link to refer to the elements of data structures, in a
way that element which have logically adjacent need not to be physically adjacent in
memory.

Types of linked lists:-

1- Single Linked List :- is a list contains set of elements, and each element (node)
contain a link or pointer to the next node.

nil

!
|

2- Multi Linked List :- a list has more than one pointer, like doubly linked list which
has two pointers pointing to the previous and next node.

nil

OR

-

4 I

3- Circuler Linked List :- a list that last node points to the first node.

-

Operation on Lists :-

————p —

1- Insertion
2- Deletion
3- Search

4- Change

EX Consider the following Linked List (Ordered) :-

Address data
1 2000 A
2 2010 B

3 2002 C
4 2012 D
3) 2006 E

a) Draw The List:-

2000 2010 2002 2012 2006

Al 2010 B| 2002 Cc | 2012 D E

b) inset node X after A at location 2005

2000 2005 2010 2002

A| 2005 X1 2010 B| 2002 ¢| 2012 |—o— —

c) Delete The Node B

2000 2005 \gou/ 2002
B 2

A| 2005 X| 2002 W /}6({ ’70 94D, |~

Quiz2: Draw The following Linked List (Ordered) after inserting C after B with
address 4003 :-

Address data
1 2000 A
2 2010 B
3 2012 D
4 2006 E

1- Dynamic storage

e Structures:
Record is a connected data like arrays, but it can contain different types of data like record
in the database. Field contains number of fields that differs in data in other records.
In C++ the record is defined as follows:
Name Struct

{
fields

}

Example: define record “data” contain name, edge:
Struct data

{
Char nam[30];
Int age;

)2

To define var of type record:
Struct data

{
Type fieldl;

Type field2;

} varl;

Example:

#include<iostream.h>
Struct student

{

Char* name;

Int no;

5

Main()

{

Student sdtl;
Std1.name="Mohammed”;
Cout<<std1l.name;

}

When executing the program the name “Mohammed” is saved in the faild name of the
variable “std1” then print it.

o Array of records:

The record can be an array:

Struct student

{

Char* name;

Int no;

} data ;

data student[100]; // define array of type data

and to use the record contents use the following way:
Student[index].name & student[index].age

e Records and Pointers:
After defining the record it can be pointer as follows:

Example:
#include<iostream.h>

Struct student

{

Char* name[30];
Int age;

} data ;

Int main()

{

Data *s,std,;

S=&std; //assignstdtos
Strcpy(std.name,”Talal”
Std.age=20;
Cout<<std.name<<std.age<<endl;
Return 0;

¥

using new:

float *q = new float //empty
float *q = new float(3.14) //contain 3.14

EX
double *p=new double;
if (p==0) then abort (); [[full memory
else
*p=33.2
end if

Delete:-

EXx:-
float *q =new float(3.14);
delete q;
g=5.2; /[error

Creating First Node In C++

Ex1:-
main ()
t

int x;

int *p; X

e p -
} return O;

Ex2:-

main()

{

struct node {

int data;

struct node *next; data

}; p — 10 next
struct node *p;
start

struct node *start;
p.data =10;

p.next=nil; I/l in c++nil is 0
start=p;

3-Operation on Singly Linked List :-

Creating linked list of 2 nodes :-

Ex:-

new(p);

start=p;

read (pT.data);
new(p2)

read (p27.data);

pT.next=p2;
p2T.next=nil;

Creating linked list of N nodes in C++ :-

main()
{intn;
struct node { int data;
struct node *next;
}
struct node *p= new struct node ;
struct node *start=p;
struct node *p2;
cin>>n;
for(i=1; i<=n; i++)
{ cin>> p.data;
if i!=nthen
struct node *p2=new struct node;
else
p2=nil;
p.next=p2;
p=p2;}

Creating node using new :-

New (p)
Start=p
Read(pT.data)
pT.link=nil

In C++ -

Struct node *p = new struct node;
Struct node *start =p ;

Cin >> p.data ; p.next =nil;

Creating linked list of N node using new :-

New (p)

Start=p

Read (n)

Fori=1ton

Begin

Read(pT.data)
If i<>nthennew (p2)
Else p2=nil;
pT.link=p2

p=p2
end;

Print The Linked List Elements :-

P= Start
While p< > nil do
Begin
writeIn(pT.data)
p=pT.link
end;

Delete Element With Certain Value :-

P= Start q P /

While (pT.data< > value do

Begin first —)&
en(g;:p; p=pT.link q*link / g

qT.link=pT.link
dispose (p); { or delete (p)}

Insert element after P :- b

Algorithm :- | /

New (p2)
Read(p27.data)
P27 .link= PT.link
PT.link =p2; end:;

|
7

Delete the first element :- P2

Algorithm :-
P= Start
Start= start™.link

dispose (p); { or delete (p)}

Delete the last element :-

P=head

If pT.link=nil then

Begin
dispose (p); { or delete (p)}
head = nil

end;
else
While (pT.link< > nil) do
Begin
Q=p; p=pT.link
end;
qT.link= nil
dispose (p); { ordelete (p)}

Insert new node to the end of Linked List :-

P= Start
While pT.link <> nil do
p=pT.link

new(q);
read(qT.data)
g T.link=nil;
pT.link=q;
Insert new node at the position n in the Linked List :-
Algorithm :-
Read (n);
Fori=1tondo
begin

p=pT.link

new(q);

read(qT.data)

qT.link=pT.link ;

pT.link=q;
end if
Insert new node before P :-

new(q);

read (pT.data)
qT.data= pT.data
qT.link= pT.link ;
pT.link=q;

delete the element P :-

g==pT.link ;
qT.data= pT.data
pT.link=gT.link ;

dispose (q);

Quiz3:

1) Delete the last element of single linked list
2) Print the single linked list

RDafoaroncroacs
P RETErERESETNR

1- Data Structures Demystified, by Jim Keogh and Ken Davidson, ISBN:0072253592,
McGraw-Hill/Osborne © 2004

2o Yoo) alang /oal el @ plaale lieall abaas 3 Calls (il daskll / bl JSLa
3o s Sl agaalle s gy el i s daed ¢ ULl JSUa" Bale dyaleil dyiall

