

 ((Pointersالمؤشرات
 -السابغ-السادسالاسبىع -

 السادس

 pointersالمؤشزاث

 تعزيف المؤشز

 الذاكزة / حجز الذاكزة للمؤشزاث وتحزيزها

 فىائد المؤشزاث ومميزاتها

 المؤشزاث والمصفىفاث / مصفىفاث المؤشزاث والمؤشزاث للمصفىفاث

 المؤشزاث كعناوين  السابغ

 مؤشزاث الدالت, مؤشزاث المؤشزاث, مقارنت المؤشزاث

B// Rationale (مبـزراث الـىحـدة) :-
The student will learn about dynamic variables (pointers) and how to use them to point

to addresses of primitive and non-primitive data structures.

C// Central (الـفـكـزة المـزكـزيت):-

- Dynamic storage

- Addresses

- References

- Pointers, Pointer to integers, characters, real data

- Pointer to arrays

- Pointer to functions

D// Objectives (أهـداف الـىحـدة):-

After studying this unit, the student will be able to define pointers and use them in

primitive and non primitive DS

Southern Technical University

Technical Institute / Qurna

Dep. of Computer Systems Techniques

Second class

Subject : Data Structures

Lecturer : Israa Mahmood Hayder

Lecture no.6,7
 ميناس نفارت الياس يوسفاعداد :

Pointers : Is dynamic variable is created and destroyed dynamically during the execution of

the program, unlike static variables. Dynamic variables are not referenced by user specified

name , instead , they are referenced by pointers.

 P 

The dynamic variable "V" is referenced by pointer variable "P" which "points to" V.

int n=20; (static variable)

 ox3ffdl8

Ex1

 Main()

 

 int x=66 ;

 int *p=&x ;

 // p hold the address of n

 cout<< "n=" << n << ",&n" <<&n<< ",p="<< p << endl;

cout << "&p=" << &p << endl ;

Run

x=66 , &x= ox3fffdl7 , p= ox3fffdl7

&p= ox3fffdl0

 ox3fffdl7

 x

 ox3fffdl0

 p

and the last pointers can be drown as follows :-

 p

 x

V

20

66

ox3fffdl7

66



p points to x then *p =66 like n

Ex2

 main ()

 

 float n =3.4;

 float *p=&n;

 cout << "*p" << *p << endl ;

 }

Run : *p=3.4

Ex 3

 int stno;

 char grade;

 char *ptrgr; pointer to grade

 int *ptrst; pointer to stno

accessing data pointed by pointer :-

char oldgrade;

char grade = 'A';

char *ptrgrade;

char *ptroldgrade;

ptrgrade = & grade;

ptroldgrade = ptrgrade

 copy

 50

 ptroldgrade ptrgrade

 وجذهما يحىيان وفس البياواث ptroldgrade , ptrgradeارا طبعىا

Pointer is used to reduce No. of times data is copied within memory.

 Pointer arithmetic :-

Ex1

 int stn =1234;

 stn ++;

run

 stn=1235

ex2

 int stn =1234;

 stn --;

run

 stn=1233

ex3

 int stn1 =1234;

 int stn2 =5678;

 int *ptrstn1;

 int *ptrstn2;

 stn1 stn2

 ptrstn1 ptrstn2 

ptrstn1 = &stn1;

ptrstn2 = &ptrstn1;

ptrstn1 ++;

ptrstn2 --;

delete ptrstn2;
 ptrstn1 ptrstn2

 1234 5678 1 5

 1 2 3 4 5 6

 ptrstn2

We can also assign pointer values to other pointer variables. If we declare a second pointer

variable:

 int *ip2;

then we can say
 ip2 = ip;

Now ip2 points where ip does; we've essentially made a ``copy'' of the arrow:

Now, if we set ip to point back to i again:

 ip = &i;

the two arrows point to different places:

We can now see that the two assignments

 ip2 = ip;

and
 *ip2 = *ip;

do two very different things. The first would make ip2 again point to where ip points (in

other words, back to i again). The second would store, at the location pointed to by ip2,

a copy of the value pointed to by ip; in other words (if ip and ip2 still point to i and j

respectively) it would set j to i's value, or 7.

 Pointers to Pointers

Since we can have pointers to int, and pointers to char, and pointers to any structures

we've defined, and in fact pointers to any type in C, it shouldn't come as too much of a

surprise that we can have pointers to other pointers. If we're used to thinking about simple

pointers, and to keeping clear in our minds the distinction between the pointer itself and

what it points to, we should be able to think about pointers to pointers, too, although we'll

now have to distinguish between the pointer, what it points to, and what the pointer that it

points to points to. (And, of course, we might also end up with pointers to pointers to

pointers, or pointers to pointers to pointers to pointers, although these rapidly become too

esoteric to have any practical use.)

The declaration of a pointer-to-pointer looks like

 int **ipp;

where the two asterisks indicate that two levels of pointers are involved.

Starting off with the familiar, uninspiring, kindergarten-style examples, we can

demonstrate the use of ipp by declaring some pointers for it to point to and some ints

for those pointers to point to:

 int i = 5, j = 6; k = 7;

 int *ip1 = &i, *ip2 = &j;

Now we can set
 ipp = &ip1;

and ipp points to ip1 which points to i. *ipp is ip1, and **ipp is i, or 5. We can

illustrate the situation, with our familiar box-and-arrow notation, like this:

If we say
 *ipp = ip2;

we've changed the pointer pointed to by ipp (that is, ip1) to contain a copy of ip2, so

that it (ip1) now points at j:

If we say
 *ipp = &k;

we've changed the pointer pointed to by ipp (that is, ip1 again) to point to k:

Derived types :- الاوىاع المشتقت

int &r = n ; reference

int *p = & n ; pointer

int a[] =  33 , 66 } array

const int c =33 const int

int f() =  return 33 } function returns int

Notes :- (On Pointers)

 pointer to pointer is variable whose value is an address of another pointer variable .

 use pointer to pointer in program to arrange data without having to move data in memory.

 If we print the content of pointer , the address shown on the screen.

Ex

 Main ()

 

 int x=5;

 int y=7;

 int *ptr1=&x ;

 int *ptr2=&y ;

 *ptr1 +=1;

 *ptr2 ++;

 ptr1=ptr2;

 *ptr1=*ptr2;

 cout << "*ptr1=" << ptr1 << " ,*ptr2" << ptr2 << endl ;

 delete ptr1;

 delete ptr2;

 return 0; }
 x y

 5 6 7

 Ptr1 ptr2

Quiz1:

Write program to define pointer to long integer and decrement by 1 then print the pointer

value and address.

2- Using pointers to arrays:-

When we use arrays, we can deal with the elements using an index that relative to the

base address. In structured languages, pointers are used with linked list.

Ex1:- Print The Array Elements

Main ()

{

 Short a[3]={22,33,44};

 cout << "a="<< a << endl;

 cout<<"size of short="<< sizof(short) <<endl;

 short*end=a+3; // convert size to of list 6

 for(short * p=a;p<end;p++)

 {

 cout<<"p="<<p<<"\t*p="<<*p<<endl;

 } }

Run

a=0x3fffla

size of short=2

p=0x3fffla *p=22

p=0x3ffflc *p=33

p=0x3fffle *p=44

* p++ إرا المؤشرdouble بايتاث وإرا 8يتقذمshort يتقذم بايتيه وإراint بايتاث. 4يتقذم

 -إرا أردوا العىصر الخامس وقىم بمايلي:*

float* p=a // a[0]

pt =5 //a[5]

 وللاوتقال للعىصر الأخير a[0-7]تعىي a[8]إرا -: ملاحظت

float*p=a[7]

ex2:-
 main ()

 {

 short a[]={22,33,44,55,66};

 for (short* p=a ; p<a+5; p++)

 cout<<"p="<<p<<"*p="<<*p<<endl; }

Strings as pointers:

Another way of accessing a contiguous chunk of memory, instead of with an array,

is with a pointer.

Since we are talking about strings, which are made up of characters, we'll be using

pointers to characters, or rather, char *'s.

However, pointers only hold an address, they cannot hold all the characters in a

character array. This means that when we use a char * to keep track of a string,

the character array containing the string must already exist (having been either

statically- or dynamically-allocated).

Below is how you might use a character pointer to keep track of a string.

char label[] = "Single";

char label2[10] = "Married";

char *labelPtr;

labelPtr = label;

We would have something like the following in memory (e.g., supposing that the

array label started at memory address 2000, etc.):

label @2000

| S | i | n | g | l | e | \0 |

label2 @3000

--

| M | a | r | r | i | e | d | \0 | | |

--

labelPtr @4000

| 2000 |

Note: Since we assigned the pointer the address of an array of characters, the

pointer must be a character pointer--the types must match.

Also, to assign the address of an array to a pointer, we do not use the address-of (&)

operator since the name of an array (like label) behaves like the address of that

array in this context. That's also why you don't use an ampersand when you pass a

string variable to scanf(), e.g,

int id;

char name[30];

cin>> &id >> name;

Now, we can use labelPtr just like the array name label. So, we could access

the third character in the string with:

Cout<< "Third char is: << labelPtr[2];

It's important to remember that the only reason the pointer labelPtr allows us to

access the label array is because we made labelPtr point to it. Suppose, we do

the following:

labelPtr = label2;

Now, no longer does the pointer labelPtr refer to label, but now to label2

as follows:

label2 @3000

--

| M | a | r | r | i | e | d | \0 | | |

--

labelPtr @4000

| 3000 |

So, now when we subscript using labelPtr, we are referring to characters in

label2. The following:

printf("Third char is: %c\n", labelPtr[2]);

prints out r, the third character in the label2 array.

Ex

 char n1='D' , n2 ='A' , n3='C' , n4 ='B';

 char *p1 , **p2;

 p1= & n1;

 p2 = &p1;

 cout << **p2 ;

 n1 n2 n3 n4 p1 p2

 D A C B 1 5

 1 2 3 4 5 6

Resut : D

Pointer to Functions

One use is returning pointers from functions, via pointer arguments rather than as the

formal return value. To explain this, let's first step back and consider the case of returning

a simple type, such as int, from a function via a pointer argument. If we write the

function

 f(int *ip)

 {

 *ip = 5;

 }

and then call it like this:
 int i;

 f(&i);

then f will ``return'' the value 5 by writing it to the location specified by the pointer passed

by the caller; in this case, to the caller's variable i. A function might ``return'' values in

this way if it had multiple things to return, since a function can only have one formal

return value (that is, it can only return one value via the return statement.) The

important thing to notice is that for the function to return a value of type int, it used a

parameter of type pointer-to-int.

Now, suppose that a function wants to return a pointer in this way. The corresponding

parameter will then have to be a pointer to a pointer. For example, here is a little function

which tries to allocate memory for a string of length n, and which returns zero (``false'') if

it fails and 1 (nonzero, or ``true'') if it succeeds, returning the actual pointer to the

allocated memory via a pointer:

#include <stdlib.h>

 int allocstr(int len, char **retptr)

 {

 char *p = malloc(len + 1); /* +1 for \0 */

 if(p == NULL)

 return 0;

 *retptr = p;

 return 1;

 }

The caller can then do something like
 char *string = "Hello, world!";

 char *copystr;

 if(allocstr(strlen(string), ©str))

 strcpy(copystr, string);

 else fprintf(stderr, "out of memory\n");

(This is a fairly crude example; the allocstr function is not terribly useful. It would

have been just about as easy for the caller to call malloc directly. A different, and more

useful, approach to writing a ``wrapper'' function around malloc is exemplified by the

chkmalloc function we've been using.)

1- Data Structures Demystified, by Jim Keogh and Ken Davidson, ISBN:0072253592,

McGraw-Hill/Osborne © 2004

1002هياكل البياواث / الطبعت الثاويت, تاليف د.عصام الصفار,اصذاراث السفير للىشر/ بغذاد, -2
3- Steve Summit // Copyright, 1996 http://www.eskimo.com/~scs/cclass/notes/sx10a.html

4- Robert I. Pitts , BU CAS CS - Strings as arrays, as pointers, and string.h

Copyright © 1993-2000, http://www.cs.bu.edu/teaching/c/string/intro/.

التعليميت مادة "هياكل البياواث ", اعذاد : وفارث الياس يىسف ,المعهذ التقىي كركىك الحقيبت- -5

http://www.eskimo.com/~scs/
http://www.eskimo.com/~scs/cclass/notes/copyright.html
http://www.eskimo.com/~scs/cclass/notes/sx10a.html
http://www.cs.bu.edu/teaching/c/string/intro/

