

 – الثالث والعشرونالاسبوع -

Sorting methods

3- Quicksort

Quicksort is a fast sorting algorithm, which is used not only for educational purposes, but

widely applied in practice. On the average, it has O(n log n) complexity, making quicksort

suitable for sorting big data volumes. The idea of the algorithm is quite simple and once you

realize it, you can write quicksort as fast as bubble sort.

Algorithm

The divide-and-conquer strategy is used in quicksort. Below the recursion step is described:

1. Choose a pivot value. We take the value of the middle element as pivot value, but it

can be any value, which is in range of sorted values, even if it doesn't present in the

array.

2. Partition. Rearrange elements in such a way, that all elements which are lesser than the

pivot go to the left part of the array and all elements greater than the pivot, go to the

right part of the array. Values equal to the pivot can stay in any part of the array. Notice,

that array may be divided in non-equal parts.
3. Sort both parts. Apply quicksort algorithm recursively to the left and the right parts.

Partition algorithm in detail

There are two indices i and j and at the very beginning of the partition algorithm i points to the

first element in the array and j points to the last one. Then algorithm moves i forward, until an

element with value greater or equal to the pivot is found. Index j is moved backward, until an

element with value lesser or equal to the pivot is found. If i ≤ j then they are swapped and i

steps to the next position (i + 1), j steps to the previous one (j - 1). Algorithm stops, when i

becomes greater than j.

Southern Technical University

Technical Institute / Qurna

Dep. of Computer Systems Techniques

Second class

Subject : Data Structures

Lecturer : Israa Mahmood Hayder

Lecture no.22,23

http://www.algolist.net/Algorithms/Sorting/Bubble_sort

After partition, all values before i-th element are less or equal than the pivot and all values

after j-th element are greater or equal to the pivot.

Example. Sort {1, 12, 5, 26, 7, 14, 3, 7, 2} using quicksort(see solution in next page).

Notice, that we show here only the first recursion step, in order not to make example too long.

But, in fact, {1, 2, 5, 7, 3} and {14, 7, 26, 12} are sorted then recursively.

Why does it work?

On the partition step algorithm divides the array into two parts and every element a from the

left part is less or equal than every element b from the right part. Also a and b satisfy a ≤

pivot ≤ b inequality. After completion of the recursion calls both of the parts become sorted

and, taking into account arguments stated above, the whole array is sorted.

EX2: // a) Sort using quick sort the following list: {8, 11, 5,14, 3, 7, 2}

Select X=8

{8, 11, 5, 14, 3, 7, 2}

{2, 11, 5, 14, 3, 7, 2}

{2, 11, 5,14, 3, 7, 11}

{2, 7, 5, 14, 3, 7, 11}

{2, 7, 5, 14, 3,14, 11}

{2, 7, 5, 3, 14,8, 11}

Complexity analysis

On the average quicksort has O(n log n) complexity, but strong proof of this fact is not trivial

and not presented here. In worst case, quicksort runs O(n
2
) time, but on the most "practical"

data it works just fine and outperforms other O(n log n) sorting algorithms.

j

i

j

i

j

i
i

j

i
i

j

i
i

j

i
i

i

j

Code snippets in C++

void quickSort(int arr[], int left, int right)

 {

 int i = left, j = right;

 int tmp;

 int pivot = arr[(left + right) / 2];

 /* partition */

 while (i <= j) {

 while (arr[i] < pivot)

 i++;

 while (arr[j] > pivot)

 j--;

 if (i <= j) {

 tmp = arr[i];

 arr[i] = arr[j];

 arr[j] = tmp;

 i++;

 j--;

 }

 };

 /* recursion */

 if (left < j)

 quickSort(arr, left, j);

 if (i < right)

 quickSort(arr, i, right);

}

QUIZ:
1- when write operation is significantly more expensive, than read operation The preferred algorithm for

sorting is:

 a- selection b- bubble c- quick

2 - Sorting data in memory is called:

 a- bubble sort b- internal sort c- sort external

3- The simplest sorting method is:

 a- selection b- bubble c- quick

4- Which sorting method take the value of the middle element as pivot value:

 a-selection b- bubble c- quick

5- The complexity of bubble sort is:

 a- O(n-2) C- O(n
2
) c- O(n)

1- Data Structures Demystified, by Jim Keogh and Ken Davidson, ISBN:0072253592,

McGraw-Hill/Osborne © 2004

1002هياكل البياناث / الطبعت الثانيت, تاليف د.عصام الصفار,اصداراث السفير للنشر/ بغداد, -2

, اعداد نفارث يوسف الياس , المعهد التقني كركوكالحقيبت التعليميت لمادة هياكل البياناث -3

