
 السادست عشر نمطيتالوحـــدة ال

 ((Sortingالترتيب
 الثالث والعشرون -العشرونالاسبوع -

الثالث -العشرون

 والعشرون

 . sorting and searching* الترتيب والبحث

 . sorting algorithmsخوارزمياث الترتيب -

 selection sort.الترتيب بالاختبار -

 .bubble sortترتيب الفقاعت -

 .quick sortالترتيب السريع -

B// Rationale (مبـرراث الـوحـدة) :-

 This unit studies several important methods for sorting lists, both contiguous lists and

linked lists. At the same time, we shall develop further tools that help with the analysis of

algorithms and apply these to determine which sorting methods perform better under

different circumstances.

C// Central Ideas (الـفـكـرة المـركـسيت):-

- Sorting algorithms

- Selection sort

- Bubble sort

- Quick Sort

D// Objectives (أهـداف الـوحـدة):-

After studying this unit, the student will be able to use following ways in sorting:

Southern Technical University

Technical Institute / Qurna

Dep. of Computer Systems Techniques

Second class

Subject : Data Structures

Lecturer : Israa Mahmood Hayder

Lecture no.20,21

- Selection sort

- Bubble sort

- Quick sort

1-Sorting

We live in a world obsessed with keeping information, and to find it, we must keep it in

some sensible order. Several years ago, it was estimated, more than half the time on many

commercial computers was spent in sorting. This is perhaps no longer true, since

sophisticated methods have been devised for organizing data, methods that do not require

that the data be kept in any special order. Eventually, nonetheless, the information does go

out to people, and then it must often be sorted in some way.

Amongst the differing environments that require different methods, the most important is

the distinction between external and internal; that is, whether there are so many records to

be sorted that external and internal sorting they must be kept in external files on disks,

tapes, or the like, or whether they can all be kept internally in high-speed memory. In this

chapter, we consider only internal sorting.

2- Selection Sort

Selection sort is one of the O(n
2
) sorting algorithms, which makes it quite inefficient for

sorting large data volumes. Selection sort is notable for its programming simplicity and it

can over perform other sorts in certain situations (see complexity analysis for more

details).

Algorithm

The idea of algorithm is quite simple. Array is imaginary divided into two parts -

sorted one and unsorted one. At the beginning, sorted part is empty, while unsorted one

contains whole array. At every step, algorithm finds minimal element in the unsorted

part and adds it to the end of the sorted one. When unsorted part becomes empty,

algorithm stops. When algorithm sorts an array, it swaps first element of unsorted part

with minimal element and then it is included to the sorted part. This implementation of

selection sort in not stable. In case of linked list is sorted, and, instead of swaps, minimal

element is linked to the unsorted part, selection sort is stable.

Example. Sort {5, 1, 12, -5, 16, 2, 12, 14} using selection sort.

 chose the smallest & exchange

Ex2) Sort {8, 11, 5, 26, 7} using Bubble sort.

8, 11, 5, 26, 7

8, 11, 5, 26, 7

5, 11,8, 26, 7

5, 11, 8, 26, 7

5, 11, 8, 26, 7

5,| 11, 8, 26, 7

5, 8, 11, 7, 26

5, 7, 11, 8, 26

5, 7, 11, 8, 26

* *

 * *

 * *

* *

* *

* *

 * *

5, 7,| 11, 8, 26

5, 7, 8, 11, 26

5, 7, 8, 11, 26

5, 7, 8, | 11, 26

5, 7, 8, 11, 26

Complexity analysis

Selection sort stops, when unsorted part becomes empty. As we know, on every step

number of unsorted elements decreased by one. Therefore, selection sort makes n steps (n is

number of elements in array) of outer loop, before stop. Every step of outer loop requires

finding minimum in unsorted part. Summing up, n + (n - 1) + (n - 2) + ... + 1, results in

O(n
2
) number of comparisons. Number of swaps may vary from zero (in case of sorted

array) to n - 1 (in case array was sorted in reversed order), which results in O(n) number of

swaps. Overall algorithm complexity is O(n
2
).Fact, that selection sort requires n - 1 number

of swaps at most, makes it very efficient in situations, when write operation is significantly

more expensive, than read operation.

C++ code

void selectionSort(int arr[], int n) {

 int i, j, minIndex, tmp;

 for (i = 0; i < n - 1; i++) {

 minIndex = i;

 for (j = i + 1; j < n; j++)

 if (arr[j] < arr[minIndex])

 minIndex = j;

 if (minIndex != i) {

 tmp = arr[i];

 arr[i] = arr[minIndex];

 arr[minIndex] = tmp;

 } }}

* *

* *

 – والعشرون الثانيالاسبوع -

Sorting methods

3- Bubble Sort

Bubble sort is a simple and well-known sorting algorithm. It is used in practice once in a

blue moon and its main application is to make an introduction to the sorting algorithms.

Bubble sort belongs to O(n
2
) sorting algorithms, which makes it quite inefficient for sorting

large data volumes. Bubble sort is stable and adaptive.

Algorithm
1. Compare each pair of adjacent elements from the beginning of an array and, if they

are in reversed order, swap them.

2. If at least one swap has been done, repeat step 1.

You can imagine that on every step big bubbles float to the surface and stay there. At the

step, when no bubble moves, sorting stops. Let us see an example of sorting an array to

make the idea of bubble sort clearer.

Example. Sort {5, 1, 12, -5, 16} using bubble sort.

Ex2: Sort {8, 11, 5, 26, 7} using Bubble sort.

8, 11, 5, 26, 7

8, 11, 5, 26, 7

8, 5,11, 26, 7

8, 5, 11, 26, 7

8, 5, 11, 7, 26

8, 5, 11, 7,| 26

5, 8, 11, 7, 26

5, 8, 11, 7, 26

8, 5, 7, |11, 26

5, 8, 7, 11, 26

5, 7, 8, 11, 26

5, 7, | 8, 11, 26

 * *

 * *

 * *

* *

* *

* *

* *

* *

* *

Complexity analysis

Average and worst case complexity of bubble sort is O(n
2
). Also, it makes O(n

2
) swaps in

the worst case. Bubble sort is adaptive. It means that for almost sorted array it gives O(n)

estimation. Avoid implementations, which don't check if the array is already sorted on

every step (any swaps made). This check is necessary, in order to preserve adaptive

property.

Turtles and rabbits

One more problem of bubble sort is that its running time badly depends on the initial order

of the elements. Big elements (rabbits) go up fast, while small ones (turtles) go down very

slow. This problem is solved in the Cocktail sort.

Turtle example. Thought, array {2, 3, 4, 5, 1} is almost sorted, it takes O(n
2
) iterations to

sort an array. Element {1} is a turtle.

Rabbit example:

Array {6, 1, 2, 3, 4, 5} is almost sorted too, but it takes O(n) iterations to sort it.

Element {6} is a rabbit. This example demonstrates adaptive property of the bubble

sort.

There are several ways to implement the bubble sort. Notice, that "swaps" check is

absolutely necessary, in order to preserve adaptive property.

