

 الهياكل البسيطةاسلوب تمثيل

Primitive Data Structures))
 --الاسبوع الثاني -

 primitive data structures* إسللل وم يلثهلللل اهايلللل البهانلللاث الب للله ت الثالث -الثاني

representation.
 . Integer الأعداد الصحهحت -
 . Real الأعداد الحقهقهت -
 . Charactersالرموز -
 . Strings ال لاسل الرمسيت -

 . Pointers اللؤشراث -

 Logical Data البهاناث اللن قي -

B// Rationale (مبـرراث الـوحـدة) :-

 The primitive data structure is the simplest and very important type to start with and to

know how they are represented, how much memory size required to represent each of them,

and the functions that used with these types in C++ language.

C// Central Ideas (الـفـكـرة اللـريـسيت):-

- Introduction to Primitive data structures:

- Integers
- Real Numbers

- Characters

D// Objectives (أاـداف الـوحـدة):-

After studying this unit , the student will be able to:-

- Realize how the integers are represented using:

1) sign and magnitude 2) 1’s complement 3) 2’s complement

- Represent the real numbers using:

Southern Technical University

Technical Institute / Qurna

Dep. of Computer Systems Techniques

Second class

Subject : Data Structures

Lecturer : Israa Mahmood Hayder

Lecture no.2
 ميناس نفارت الياس يوسفاعداد :

1) Fixed point method 2) Floating point method

QUIZ :

 Circle the correct answer:

1- The number (-9) in 1’s complement and module 32 is equal to:

 a)22 b) 15 c)6

2-How many bits the fraction part requires to be represented in fixed point method module

16: a) 24 bit b)5 bit c)7 bit

3- Sign and magnitude require:

 a) 32 bit b) 16 bit c) 8 bit

4- In 32 bit floating point, exponent takes: a) 1 bit b) 8 bits c)23 bits

 5-To represent the short data in memory we require:

 a) 2bytes b) 1 byte c) 1bit

1- Introduction to Primitive data structures:

 Abstract data types are divided into two categories, primitive data types and user-defined

data types. A primitive data type is defined by the programming language, such as the data

types you learned about in the previous unit. Some programmers call these built-in data

types.

mk:@MSITStore:E:/data%20structure/J.Keogh,%20K.Davidson%20-%20Data%20Structures%20Demystified.chm::/8157final/LiB0003.html#4

You determine the amount of memory to reserve by determining the appropriate abstract

data type group to use and then deciding which abstract data type within the group is right

for the data.

There are four data type groups:

 Integer Stores whole numbers and signed numbers. Great for storing the number of

dollars in your wallet when you don’t need a decimal value.

 Floating-point Stores real numbers (fractional values). Perfect for storing bank

deposits where pennies (fractions of a dollar) can quickly add up to a few dollars.

 Character Stores a character. Ideal for storing names of things.

 String

 Boolean Stores a true or false value. The correct choice for storing a yes or no or true

or false response to a question.

 Pointers

A // Methods for representing integers:

The integer abstract data type group consists of four abstract data types used to reserve

memory to store whole numbers: byte , short , int , and long as described in previous unit.

Depending on the nature of the data, sometimes an integer must be stored using a positive

or negative sign, such as a +10 or –5. Other times an integer is assumed to be positive so

there isn’t any need to use a positive sign. An integer that is stored with a sign is called a

signed number; an integer that isn’t stored with a sign is called an unsigned number.

Declaration in C++: Int x;

An integer is a whole number which may be negative. The number must therefore be

encoded in such a way as to tell if it is positive or negative, and to follow the rules of

addition. The trick involves using an encoding method called twos complement.

 A positive integer or zero will be represented in binary (base 2) as a natural

number, except that the highest-weighted bit (the bit on the far left) represents the

plus or minus sign. So for a positive integer or zero, this bit must be set to 0 (which

corresponds to a plus sign, as 1 is a minus sign). Thus, if a natural number is

encoded using 4 bits, the largest number possible will be 0111 (or 7 in decimal).

Generally, the largest positive integer encoded using n bits will be 2n-1-1.

 A negative integer is encoded using twos complement.

The principle of twos complement:

Choose a negative number.

 Take its absolute value (its positive equivalent)

 It is represented in base 2 using n-1 bits

 Each bit is switched with its complement (i.e. the zeroes are all replaced by

ones and vice versa)

 Add 1

Note that by adding a number and its twos complement the result is 0

Let's see this demonstrated in an example:
We want to encode the value -5 using 8 bits. To do so:

 write 5 in binary: 00000101

 switch it to its complement: 11111010

 add 1: 11111011

 the 8-bit binary representation of -5 is 11111011

Comments:
The highest-weighted bit is 1, so it is indeed a negative number.

If you add 5 and -5 (00000101 and 11111011) the sum is 0 (with remainder 1).

1- Sign and magnitude: used to represent the signed numbers.

 Sign magnitude

Sign: 0- positive , 1- negative

Number of bits in magnitude (
nRM)

n: الاس (power)

R: الاساس (Base)

Ex1 Express the integer (-9) in sign and magnitude and module 16.
nRM

n216 16=
n2 then we need to use 4 bits for representing the number+1bit for

sign.:

 -9 = 1 1 0 0 1

Ex2 Express the integer (-7) in sign and magnitude and module 32.

nRM
5232 =(need 5 bits) (-7)= 1 0 0 1 1 1

Disadvantage:

1- Need additional bit for sign

2- Need time to determine the operation (addition/subtraction)

3- Need address and substructure machine

2- 2’s complement: Do not use sign bit, and it reduce subtraction and time.

 xM (-x)complement s2'

Ex1 Express the integer (-2) in 2’s complement and module 16.

 16-2=(10000)2 -(10) 2 = (1110) 2 or 16-2=14 = (1110) 2

Ex2 Express the integer (-38) in 2’s complement and module 32.

-38 mod 32= -6

32-(6) = 26 =(11010) 2

Ex3 Express the integer (-47) in 2’s complement and module 16.

-47 mod 16= -15

16-(15) = 1 =(0001) 2
Ex4 Evaluate the operation (3+4) , (3-4) and (-3+4) in 2’s complement and module 16.

a) 3+4 = (0011) 2 +(0100) 2 = (0111) 2 =7

b) 3-4 = (0011) 2 + 2’s compl(4) = (0011) 2 + (1100) 2

 =(1111) 2

 =11110000+1=0001 -1 4-3 التحقيق :

 لاى الناتج سالب ناخذ الوتون

3- 1’s complement: Do not use sign bit, and it reduce subtraction and time.

 1 (-x)complement s1' xM or 1 XM

Ex1 Express the integer (-9) in 1’s complement and module 16.

 1’s compl(-9)= 16-9-1= 6= (110)2

Ex2 Express the integer (-18) in 1’s complement and module 32.

1’s compl(-18)= 32-18-1 = 13 =(01101) 2

Ex3 Evaluate the operation (3-4) in 1’s complement and module 16.

 3-4 = (0011) 2 + 1’s compl(4) = (0011) 2 + (1011) 2

 =(1110) 2

 =s compl(1110) = 0001 -1’1 4-3 التحقيق :

 الوتون لاى الناتج سالب ناخذ

B// Methods for representing Real Numbers:

1- Fixed Point Method: It uses 16- bit as follows

 4-bits 7-bits 5-bits

 Sign Magnitude Fraction

 2- Floating-point method:

The term floating-point refers to the way decimals are referenced in memory. There are two

parts of a floating-point number: the real number, which is stored as a whole number, and

the position of the decimal point within the whole number. This is why it is said that the

decimal point “floats” within the number. The float abstract data type is used for real

numbers that require single precision, such as United States currency. Single precision
means the value is precise up to 7 digits to the right of the decimal.

Declaration in C++:

Float x;

Floating point uses 32 bits for representing too large or too small numbers.

 1-bit 8-bits 23-bits

 Sign Magnitude Fraction

The goal is to represent a number with a decimal point in binary (for example, 101.01,

which is not read one hundred one point zero one because it is in fact a binary number, i.e.

5.25 in decimal) using the form 1.XXXXX... * 2
n
 (in our example, 1.0101*2

2
). IEEE

standard 754 defines how to encode a real number.

This standard offers a way to code a number using 32 bits, and defines three components:

 the plus/minus sign is represented by one bit, the highest-weighted bit (furthest to the

left)

 the exponent is encoded using 8 bits immediately after the sign

 the mantissa (the bits after the decimal point) with the remaining 23 bits

Thus, the coding follows the form:

seeeeeeeemmmmmmmmmmmmmmmmmmmmmmm

 the s represents the sign bit.

 each e represents an exponent bit

 each m represents a mantissa bit

However, there are some restrictions for exponents:

 the exponent 00000000 is forbidden

 the exponent 11111111 is forbidden However, they are sometimes used to report errors.

This numeric configuration is called NaN, for Not a number.

 127 (01111111) must be added to the exponent in order to convert the decimal to a real

number in binary. The exponents, therefore, can range from -254 to 255

 Thus, the formula for expressing real numbers is:

 (-1)^S * 2^(E - 127) * (1 + F)

 where:

 S is the sign bit and so 0 is understood as positive (-1^0=1).

 E is the exponent to which 127 must be added to obtain the encoded equivalent.

 F is the fraction part, the only one which is expressed, and which is added to 1 to perform

the calculation.

Here is an example:

The value 525.5 is to be encoded.

 525.5 is positive, so the first bit will be 0.

 Its representation in base 2 is: 1000001101.1

 By normalising it, we get: 1.0000011011*2^
9

 Adding 127 to the exponent, which is 9, gives 136, or in base 2: 10001000

 The mantissa is composed of the decimal part of 525.5 in normalised base 2, which is

0000011011.

 As the mantissa must take up 23 bits, zeroes must be added to complete it:

00000110110000000000000

 The binary representation of 525.5 under IEEE standard 754 is therefore:

0 1000 1000 00000110110000000000000

0100 0100 0000 0011 0110 0000 0000 0000 (4403600 in hexadecimal)

Here is another example, this time using a negative real number :

The value -0.625 is to be encoded.

 The s bit is 1, as 0.625 is negative.

 0.625 is written in base 2 as follows: 0.101

 We want to write it in the form 1.01 x 2-1

 Consequently, the exponent is worth 1111110 as 127 - 1 = 126 (or 1111110 in

binary)

 The mantissa is 01000000000000000000000 (only the digits after the decimal point

are represented, as the whole number is always equal to 1)

 The binary representation of the number 0.625 under IEEE standard 754 is:

1 1111 1110 01000000000000000000000

1111 1111 0010 0000 0000 0000 0000 0000 (FF 20 00 00 in hexadecimal)

Quiz1:

 Represent the number (101.11100)2 in memory

3-Types of floating point Binary reals

1- Single precession (32 bit) floating point:

1 Bit for sign

8 bit for exponent

23 bit for fractional part

 2- Single precession (64 bit) floating point:

1 Bit for sign

11 bit for exponent

52 bit for fractional part

 3- Single precession (80 bit) floating point:

1 Bit for sign

16 bit for exponent

63 bit for fractional part

If number =

 0 00000000 00000000… 0

 1 00000000 00000000… -0

 0 11111111 00000000 …

 1 11111111 00000000 … -

 x 11111111 1xxxxxxx … QNot a name

 x 11111111 0xxxxxxx … Snot a name

4-Numerical Functions in C++

Sin(), cos(), abs() tan(), atan()

Log(), log10(), power(), sqrt(), rnd()

Quiz2:

1- Wirite program to print the size of the primitive types using the function sizeof().

2- Evaluate 4-12 in module 16 using 1's complement method.

3- Express 11000110.1 using 32 bit floating point method.

1- http://en.kioskea.net/s/representation-of-real-numbers-and-integers (URL)

, الجزء الاول,الطبعت الاولى ,جىى ر.هيىبارد, الذار الذوليت ++Cبلغت سلسلت هلخصاث شىم للبزهجت -2

 . 2222للاستثواراث الثقافيت,

 .2222الصفار,اصذاراث السفيز للنشز/ بغذاد, هياكل البياناث / الطبعت الثانيت, تاليف د.عصام -3

 ", اعذاد : نفارث الياس يىسف ,الوعهذ التقني كزكىكالتعليويت هادة "هياكل البياناث الحقيبت -4

