Y
*y
<
%
e 2

=
go
A

e Y/

< N

& &

> e\ g
L

—
n
o
-
A

o)

!'_ Data Structure.- Stack

israa Mahmoud hayder

Non-Primitive Data Structure
Linear Data Structure: Stack

o A stack is a linear data structure which can be accessed only at
one of its

ends for storing and retrieving data. For this reason, a stack is
called an

LIFO structure: last in/first out.

> I OOOMmMMN

So F is the current top element of the stack, If
any new items are added to the stack they are
placed on top of F, and if any items are
deleted, F is the first to be deleted.

i Stack Specification

= Definitions: (provided by the user)

« MAX_ITEMS: Max number of items that might be on
the stack

« ItemType: Data type of the items on the stack
= Operations

= MakeEmpty

= Boolean IsEmpty

= Boolean IsFull

= Push (ItemType newlItem)

= Pop (ItemType& item)

i Push (ItemType newItem)

= Function: Adds newltem to the top
of the stack.

n Preconditions. Stack has been
initialized and is not full.

n Postconditions. newltem is at the
top of the stack.

stack Pop(x) stack.Push{10)

stack.Push{2) stack Push(3) stack Push(5) stack Pop(x)

to to
0o —e| 2 |g 2 o 2 o 2 o~e| 2 o ANk
to t top
1 1 —e| 3 |1 3 |1 2% 3 3 {_—e| 10 [1
top
2 2 2 - 5 |2 5 2 5 |2 5 |2
3 3 3 3

3 3 3

i The condition resulting from trying to

push an element onto a full stack.

If(!stack.IsFull())
stack.Push(item);

= The condition resulting from trying to
pop an empty stack.

if(!stack.IsEmpty())
stack.Pop(item);

= Stack: Application

= |1. Internet Web browsers store the addresses of recently
isited sites on a

ack. Each time a user visits a new site, that site’s address
is “pushed”

= onto the stack of addresses. The browser then allows the
user to “pop”

= back to previously visited sites using the “back” button.

= 2. Text editors usually provide an “undo” mechanism that
cancels recent

= editing operations and reverts to former states of a
document. This undo

= operation can be accomplished by keeping text changes in
a stack.

Stack Operations

a stack are given special

il‘ he two main operations which can be applied

mes, when an item is added to a stack, it is
Pushed to the stack, and
when an item is removed, it is Popped from
the stack.

Push A Push B pop Push C Push I» pop

f—‘,gup=[} /Tup=1 f/énp=2 v//i['nt:+1:||=] /-/Tnp=2 /J"f['np=3 Top=2
B

A A A

el
w0

Stack Operations

These are two basic operations associated with
stack:

1. Push(): Insert element e at the top of the stack.

2. Pop(): Remove the top element from the stack;
an error occurs if the stack

IS empty.
Additionally, these supporting functions:

1. size(): Return the number of elements in the
stack.

2. Isempty(): Return true if the stack is empty and
false otherwise.

3. Isfull(): Return true if the stack is full and false
otherwise.

Representation of Stack
e Since a stack is a linear data structure, any

linéar data structure

implementation will do. A stack can be
implemented by means of Array,

Structure, Pointer, and Linked List. Stack can
either be a fixed size one or it

may have a sense of dynamic resizing
1. Non-linked- structures (The array).
2. Linked structures (Linked list).

Stack Representation: Array

e The simplest method to represent a stack is to use an array to be
home of

the stack.

» The stack may therefore be declared and containing two objects: an
array

with suitable size and with suitable data type (Int, Float,..etc) to hold
the

elements of the stack, and an integer to indicate the position of the
current

stack top within the array.

Ex: The below declaration example in the C++ language
const SIZE= 10;

Int stack[SIZE];

Int top= -1; // That is mean the stack empty.

= Stack Representation: Array
= Sub program to empty the stack
| ck ()

= Sub program to sure if the stack is full or not
= Int fullstack()

.}

= If(top>=size-1)

= return(1);

= else return(0);

= {

tack Representation: Array
ub program to delete an element from the stack

}
if(emptystack())

j

cout<<"error...the stack is empty"”"<<endl;
cout<<"press any key to exit"<<endl;
getch();

exit(0);

d

Else {

item=stack[top];

top=top-1,

i

