
Data Structure.- Stack

Second stage  : Data Structures

israa Mahmoud hayder



Non-Primitive Data Structure
Linear Data Structure: Stack

 • A stack is a linear data structure which can be accessed only at 
one of its

 ends for storing and retrieving data. For this reason, a stack is 
called an

 LIFO structure: last in/first out.

 2

 F

 E

 D

 C

 B

 A

 So F is the current top element of the stack, If

 any new items are added to the stack they are

 placed on top of F, and if any items are

 deleted, F is the first to be deleted.



Stack Specification

 Definitions: (provided by the user)

 MAX_ITEMS: Max number of items that might be on 
the stack

 ItemType: Data type of the items on the stack

 Operations

 MakeEmpty

 Boolean IsEmpty

 Boolean IsFull

 Push (ItemType newItem)

 Pop (ItemType& item)



Push (ItemType newItem)

 Function: Adds newItem to the top 
of the stack.

 Preconditions: Stack has been 
initialized and is not full.

 Postconditions: newItem is at the 
top of the stack.





Stack overflow
 The condition resulting from trying to 

push an element onto a full stack.

if(!stack.IsFull())

stack.Push(item);

Stack underflow
 The condition resulting from trying to 

pop an empty stack.

if(!stack.IsEmpty())

stack.Pop(item);



 Stack: Application

 1. Internet Web browsers store the addresses of recently 
visited sites on a

 stack. Each time a user visits a new site, that site’s address 
is “pushed”

 onto the stack of addresses. The browser then allows the 
user to “pop”

 back to previously visited sites using the “back” button.

 2. Text editors usually provide an “undo” mechanism that 
cancels recent

 editing operations and reverts to former states of a 
document. This undo

 operation can be accomplished by keeping text changes in 
a stack.



Stack Operations
• The two main operations which can be applied 
to a stack are given special
names, when an item is added to a stack, it is 
Pushed to the stack, and
when an item is removed, it is Popped from 
the stack.



 Stack Operations

 These are two basic operations associated with 
stack:

 1. Push(): Insert element e at the top of the stack.

 2. Pop(): Remove the top element from the stack; 
an error occurs if the stack

 is empty.

 Additionally, these supporting functions:

 1. size(): Return the number of elements in the 
stack.

 2. Isempty(): Return true if the stack is empty and 
false otherwise.

 3. Isfull(): Return true if the stack is full and false 
otherwise.



 Representation of Stack

 • Since a stack is a linear data structure, any 
linear data structure

 implementation will do. A stack can be 
implemented by means of Array,

 Structure, Pointer, and Linked List. Stack can 
either be a fixed size one or it

 may have a sense of dynamic resizing

 1. Non-linked- structures (The array ).

 2. Linked structures (Linked list).



 Stack Representation: Array

 • The simplest method to represent a stack is to use an array to be 
home of

 the stack.

 • The stack may therefore be declared and containing two objects: an 
array

 with suitable size and with suitable data type (Int, Float,..etc) to hold 
the

 elements of the stack, and an integer to indicate the position of the 
current

 stack top within the array.

 Ex: The below declaration example in the C++ language

 const SIZE= 10;

 Int stack[SIZE];

 Int top= -1; // That is mean the stack empty.



 Stack Representation: Array

 Sub program to empty the stack

 void clearstack ()

 {

 top = -1 ;

 }

 Sub program to sure if the stack is full or not

 int fullstack()

 {

 if(top>=size-1)

 return(1);

 else return(0);

 }



Stack Representation: Array
Sub program to delete an element from the stack
void pop()
{

if(emptystack())
{

cout<<"error…the stack is empty"<<endl;
cout<<"press any key to exit"<<endl;
getch();
exit(0);
}

Else {
item=stack[top];
top=top-1;
}}


