
Data Structure.- Stack

Second stage : Data Structures

israa Mahmoud hayder

Non-Primitive Data Structure
Linear Data Structure: Stack

 • A stack is a linear data structure which can be accessed only at
one of its

 ends for storing and retrieving data. For this reason, a stack is
called an

 LIFO structure: last in/first out.

 2

 F

 E

 D

 C

 B

 A

 So F is the current top element of the stack, If

 any new items are added to the stack they are

 placed on top of F, and if any items are

 deleted, F is the first to be deleted.

Stack Specification

 Definitions: (provided by the user)

 MAX_ITEMS: Max number of items that might be on
the stack

 ItemType: Data type of the items on the stack

 Operations

 MakeEmpty

 Boolean IsEmpty

 Boolean IsFull

 Push (ItemType newItem)

 Pop (ItemType& item)

Push (ItemType newItem)

 Function: Adds newItem to the top
of the stack.

 Preconditions: Stack has been
initialized and is not full.

 Postconditions: newItem is at the
top of the stack.

Stack overflow
 The condition resulting from trying to

push an element onto a full stack.

if(!stack.IsFull())

stack.Push(item);

Stack underflow
 The condition resulting from trying to

pop an empty stack.

if(!stack.IsEmpty())

stack.Pop(item);

 Stack: Application

 1. Internet Web browsers store the addresses of recently
visited sites on a

 stack. Each time a user visits a new site, that site’s address
is “pushed”

 onto the stack of addresses. The browser then allows the
user to “pop”

 back to previously visited sites using the “back” button.

 2. Text editors usually provide an “undo” mechanism that
cancels recent

 editing operations and reverts to former states of a
document. This undo

 operation can be accomplished by keeping text changes in
a stack.

Stack Operations
• The two main operations which can be applied
to a stack are given special
names, when an item is added to a stack, it is
Pushed to the stack, and
when an item is removed, it is Popped from
the stack.

 Stack Operations

 These are two basic operations associated with
stack:

 1. Push(): Insert element e at the top of the stack.

 2. Pop(): Remove the top element from the stack;
an error occurs if the stack

 is empty.

 Additionally, these supporting functions:

 1. size(): Return the number of elements in the
stack.

 2. Isempty(): Return true if the stack is empty and
false otherwise.

 3. Isfull(): Return true if the stack is full and false
otherwise.

 Representation of Stack

 • Since a stack is a linear data structure, any
linear data structure

 implementation will do. A stack can be
implemented by means of Array,

 Structure, Pointer, and Linked List. Stack can
either be a fixed size one or it

 may have a sense of dynamic resizing

 1. Non-linked- structures (The array).

 2. Linked structures (Linked list).

 Stack Representation: Array

 • The simplest method to represent a stack is to use an array to be
home of

 the stack.

 • The stack may therefore be declared and containing two objects: an
array

 with suitable size and with suitable data type (Int, Float,..etc) to hold
the

 elements of the stack, and an integer to indicate the position of the
current

 stack top within the array.

 Ex: The below declaration example in the C++ language

 const SIZE= 10;

 Int stack[SIZE];

 Int top= -1; // That is mean the stack empty.

 Stack Representation: Array

 Sub program to empty the stack

 void clearstack ()

 {

 top = -1 ;

 }

 Sub program to sure if the stack is full or not

 int fullstack()

 {

 if(top>=size-1)

 return(1);

 else return(0);

 }

Stack Representation: Array
Sub program to delete an element from the stack
void pop()
{

if(emptystack())
{

cout<<"error…the stack is empty"<<endl;
cout<<"press any key to exit"<<endl;
getch();
exit(0);
}

Else {
item=stack[top];
top=top-1;
}}

