
Introduction to Data Structure

Second stage : Data Structures

israa Mahmoud hayder

Course Objectives
Objectives:

 1. Encourages students to explore data structures by
implementing them, a

 process through which students discover how data
structures work and

 how they can be applied.

 2. Students will be expected to write C++ language
programs, ranging from

 very short programs to more elaborate systems.

 Pre-requisite:

• A good knowledge of C++ language, use of Function and
structures.

Definition

 Data structure is representation of the logical

relationship existing between individual

elements of data.

 In other words, a data structure is a way of

organizing all data items that considers not

only the elements stored but also their

relationship to each other.

Introduction

 Data structure affects the design of both

structural & functional aspects of a program.

Program=algorithm + Data Structure

 You know that a algorithm is a step by step

procedure to solve a particular function.

Introduction

 That means, algorithm is a set of instruction

written to carry out certain tasks & the data

structure is the way of organizing the data

with their logical relationship retained.

 To develop a program of an algorithm, we

should select an appropriate data structure

for that algorithm.

 Therefore algorithm and its associated data

structures from a program.

Classification of Data Structure

 Data structure are normally divided into two

broad categories:

 Primitive Data Structure

 Non-Primitive Data Structure

Classification of Data Structure

Data structure

Primitive DS Non-Primitive DS

Integer Float Character PointerFloatInteger Float

Classification of Data Structure

Non-Primitive DS

Linear List Non-Linear List

Array

Link List Stack

Queue Graph Trees

Primitive Data Structure

 There are basic structures and directly
operated upon by the machine instructions.

 In general, there are different representation
on different computers.

 Integer, Floating-point number, Character
constants, string constants, pointers etc, fall
in this category.

Non-Primitive Data Structure

 There are more sophisticated data

structures.

 These are derived from the primitive data

structures.

 The non-primitive data structures

emphasize on structuring of a group of

homogeneous (same type) or heterogeneous

(different type) data items.

Non-Primitive Data Structure

 Lists, Stack, Queue, Tree, Graph are

example of non-primitive data structures.

 The design of an efficient data structure

must take operations to be performed on the

data structure.

Non-Primitive Data Structure

 The most commonly used operation on data
structure are broadly categorized into
following types:

 Create

 Selection

 Updating

 Searching

 Sorting

 Merging

 Destroy or Delete

Different between them

 A primitive data structure is generally a

basic structure that is usually built into the

language, such as an integer, a float.

 A non-primitive data structure is built out of

primitive data structures linked together in

meaningful ways, such as a or a linked-list,

binary search tree, AVL Tree, graph etc.

Linear Data Structure:: Arrays

 An array is defined as a set of finite number

of homogeneous elements or same data

items.

 It means an array can contain one type of

data only, either all integer, all float-point

number or all character.

Arrays

 Simply, declaration of array is as follows:

int arr[10]

 Where int specifies the data type or type of

elements arrays stores.

 “arr” is the name of array & the number

specified inside the square brackets is the

number of elements an array can store, this is

also called sized or length of array.

Arrays

 Following are some of the concepts to be
remembered about arrays:

 The individual element of an array can be
accessed by specifying name of the array,
following by index or subscript inside
square brackets.

 The first element of the array has index
zero[0]. It means the first element and
last element will be specified as:arr[0] &
arr[9]

Respectively.

Arrays

 The elements of array will always be
stored in the consecutive (continues)
memory location.

 The number of elements that can be stored
in an array, that is the size of array or its
length is given by the following equation:

(Upperbound-lowerbound)+1

Arrays

 For the above array it would be

(9-0)+1=10,where 0 is the lower bound
of array and 9 is the upper bound of
array.

 Array can always be read or written
through loop. If we read a one-
dimensional array it require one loop for
reading and other for writing the array.

Arrays

 For example: Reading an array

For(i=0;i<=9;i++)

cout << arr[i];

 For example: Writing an array

For(i=0;i<=9;i++)

cin>> arr[i];

Arrays

 If we are reading or writing two-

dimensional array it would require two

loops. And similarly the array of a N

dimension would required N loops.

 Some common operation performed on

array are:

 Creation of an array

 Traversing an array

Arrays

 Insertion of new element

 Deletion of required element

 Modification of an element

 Merging of arrays

