

Second stage : Data Structures

Data Structure.- Array

israa Mahmoud hayder

One – Dimensional Arrays

- The address of the first location is called the base address of the array and is denoted by base (BA) and the rest of the array elements come after this address.
- Computer does not need to keep track of the address of every array element, but need to track only the address of the first element of the array Base Address (BA) and to reach to any array element and the compiler use the following formula to do so.

Loc $(N[I]) = BA + (I) \times Size$

 Loc N[I]: The location of the element I, BA: Fixed base address, Size: A fixed constant, is also known as size of the data type.

One – Dimensional Arrays: Example

Example : Consider an one dimension array (N) with size 10 and the base address equal (3002) and each element of the array occupy 1 byte. find the address the element number six.

Loc $(N[I]) = BA + (I) \times Size$

then, Loc (N [5]) = 3002 + (5) × 1 Loc (N [5]) =3007.

> The Physical Representation Of Array In Memory

Physical address	Memory
3002	
3003	
3004	
3005	
3006	
3007	
:	
3011	
	Physical address 3002 3003 3004 3005 3006 3007 : 3011

Programmer view

Compiler view

One – Dimensional Arrays: Example

Example 2: Consider an one dimension array (N) with size 30 and the base address equal (200) and each element of the array occupy 2 byte. find the address the element number 16.

Loc (N [I]) = BA + (I) × Size then, Loc (N [15]) = $200 + (15) \times 2$ Loc (N [15]) = 230.

> The Physical Representation Of Array In Memory

Logical address	Physical address	Memory
NTO	200	
N[0]	201	
-	:	
NUS	230	
N[15]	231	
-		
N[20]	260	
IN[20]	261	

Two – Dimensional Arrays

- **2D array** is a data structure type that consists of a set of elements that are
- all of the same type, and all elements are distributed on a set of rows and
- columns that represent the size of the array.
- Int N[3][5]; That is mean we reserves (3*5=15) successive memory
- locations and each location is large enough to conation single integer. The
- number of Rows or Columns is called the range of the dimension.
- The array N will be represented in the memory by block of (3 × 5)
- sequential memory location. Programming language will store array N
- either :
- 1. Column by Column: called (Column-Major Order) Ex: Fortran, Matlab.
- **2. Row by Row**: called (Row-Major Order) Ex: C, C++, Java.

Two – Dimensional Arrays

	(B)		Memory	(A)		Memory
		N[0][0]			N[0][0]	
	Col 0	N[1][1]			N[0][1]	
Representation Of The Two		N[2][2]		Row 0	N[0][2]	
Dimonsional Array In The		N[0][3]			N[0][3]	
Dimensional Array III The	Col 1	N[1][4]			N[0][4]	
Memory		N[2][0]			N[1][0]	
(A) By Kow		N[0][1]			N[1][1]	
(B) By Column	Col 2	N[1][2]		Row 1	N[1][2]	
		N[2][3]			N[1][3]	
		N[0][4]			N[1][4]	
	Col 3	N[1][0]			N[2][0]	
		N[2][1]			N[2][1]	
		N[0][2]		Row 2	N[2][2]	
	Col 4	N[1][3]			N[2][3]	
		N[2][4]			N[2][4]	

Column-Major Order :

Column-Major Order :

- Loc (N [I][J]) = BA + (m × J + I) × Size
- Where:
- Loc N[I][J] : the location of the element I,J.
- BA: fixed base address.
- m: number of row.
- Size: a fixed constant, is also known as size of the data type.

Column-Major Order : Example

Example: Consider a two dimension array (N) with size (m=3 × n= 5) and the base address equal (300) and each element of the array occupy 1 byte. find the address the element N[1][2].Suppose the programming store 2D using Column-Major.

Loc (N [I][J]) = BA + (m × J + I) × Size Loc (N [1][2]) = 300 + (3 × 2 + 1) × 1		L.A.	P.A.	Memory
$Loc([1][2]) = 300 + (3 \land 2 + 1) \land 1$	C-10	N[0][0]	300	
Loc $(N[I][J]) = 307$	Col U	:	:	
	C-11	N[0][3]	303	
	Col I	:	:	
		N[0][1]	306	
	Col 2	N[1][2]	307	
		N[2][3]	308	
Of 2D Array In Memory	Call	N[0][4]		
	Cors	:	:	
	Calif	N[0][2]		
	C014	:	:	

Row-Major Order : Example

Example : Consider a two dimension array (N) with size (m=3 × n= 5) and the base address equal (600) and each element of the array occupy 1 byte. find the address the element N[2][3].Suppose the programming store 2D using Row-Major.

Loc (N [I][J]) = BA + ($n \times I + J$) × Size
Loc (N [2][3]) = $600 + (5 \times 2 + 3) \times 1$
Loc (N [I][J]) = 613

The Physical Representation Of 2D Array In Memory

P.A L.A. Memory N[0][0] 600 Row 0 : 605 N[1][0] Row 1 2 610 N[2][0] 611 N[2][1] 612 N[2][2] Row 2 613 N[2][3] 614 N[2][4]